MODIFICATION METHODS TO ENHANCE THE PERFORMANCE OF TiO2 IN PHOTOCATALYSIS

Authors

  • Zhentao Zhou State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant protection, Chinese Academy of Agriculture Science, China; National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Ukraine https://orcid.org/0000-0002-0534-8765
  • Tetiana Dontsova National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Ukraine http://orcid.org/0000-0001-8189-8665

DOI:

https://doi.org/10.20535/2218-930022023299542

Keywords:

composites, degradation of organic pollutants, modification, organic pollutants, photocatalysis, titanium dioxide

Abstract

With industrial development and changes in human lifestyle, organic pollution has become an increasingly serious problem, posing a serious threat to the ecological environment and human health. As an emerging advanced oxidation process, titanium dioxide–based photocatalysis has shown unparalleled potential in solving environmental pollution problems due to its stable catalyst properties, mild reaction conditions, environmental friendliness and low cost. However, titanium dioxide is limited in its photocatalytic efficiency by the fact that it can only be excited by ultraviolet light, its carriers are easily compounded and its adsorption capacity is weak. In order to improve the photocatalytic degradation efficiency of organic pollutants, the properties of titanium dioxide can be enhanced by means of modification. This article mainly reviews several major modification methods and research progresses of semiconductor titanium dioxide materials for the degradation performance of organic pollutants in the environment, and focuses on the advantages of the new Metal Organic Frameworks/ titanium dioxide composite system in enhancing the degradation performance of organic pollutants. Finally, the application prospects and key issues of Metal Organic Frameworks/ titanium dioxide materials in photocatalytic treatment of organic pollution problems are presented.

References

A. Nasalevich, M.; Veen, M. v. d.; Kapteijn, F.; Gascon, J. Metal–organic frameworks as heterogeneous photocatalysts: advantages and challenges. CrystEngComm. 2014, 16 (23), 4919–4926. http://dx.doi.org/10.1039/C4CE00032C.

Ajiboye, T. O.; Oyewo, O. A.; Onwudiwe, D. C. Simultaneous removal of organics and heavy metals from industrial wastewater: A review. Chemosphere 2021, 262, 128379. https://doi.org/10.1016/j.chemosphere.2020.128379.

Alivisatos, A. P. Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science 1996, 271 (5251), 933–937. http://dx.doi.org/10.1126/science.271.5251.933.

Alosfur, F. K. M.; Ridha, N. J.; Jumali, M. H. H.; Radiman, S. One–step formation of TiO2 hollow spheres via a facile microwave–assisted process for photocatalytic activity. Nanotechnology 2018, 29 (14), 145707. http://dx.doi.org/10.1088/1361–6528/aaabee.

Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible–Light Photocatalysis in Nitrogen–Doped Titanium Oxides. Science 2001, 293 (5528), 269–271. http://dx.doi.org/10.1126/science.1061051.

Batten, S. R.; Neville, S. M.; Turner, D. R. Coordination Polymers: Design, Analysis and Application; Royal Society of Chemistry, 2008.

Bhatt, P.; Gangola, S.; Bhandari, G.; Zhang, W.; Maithani, D.; Mishra, S.; Chen, S. New insights into the degradation of synthetic pollutants in contaminated environments. Chemosphere 2021, 268, 128827. https://doi.org/10.1016/j.chemosphere.2020.128827.

Bishop, S. Childhood Lymphohematopoietic Cancer Incidence and Hazardous Air Pollutants in Southeast Texas, 1995–2004. Environmental Health Perspectives 2008, 116 (11), 1576–1580. http://dx.doi.org/10.1289/ehp.11593.

Chen, C.; Ma, W.; Zhao, J. Semiconductor–mediated photodegradation of pollutants under visible–light irradiation. Chem. Soc. Rev. 2010, 39 (11), 4206–4219. http://dx.doi.org/10.1039/B921692H.

Chen, H.; Nanayakkara, C. E.; Grassian, V. H. Titanium Dioxide Photocatalysis in Atmospheric Chemistry. Chem. Rev. 2012, 112 (11), 5919–5948. http://dx.doi.org/10.1021/cr3002092.

Christopher, P.; Xin, H.; Linic, S. Visible–light–enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nature Chemistry 2011, 3 (6), 467–472. http://dx.doi.org/10.1038/nchem.1032.

Devic, T.; Serre, C. High valence 3p and transition metal based MOFs. Chem. Soc. Rev. 2014, 43 (16), 6097–6115. https://doi.org/10.1039/C4CS00081A.

Diwald, O.; Thompson, T. L.; Goralski, E. G.; Walck, S. D.; Yates, J. T. The Effect of Nitrogen Ion Implantation on the Photoactivity of TiO2 Rutile Single Crystals. J. Phys. Chem. B 2004, 108 (1), 52–57. http://dx.doi.org/10.1021/jp030529t.

Dong, J.; Cui, P.; Shi, P. F.; Cheng, P.; Zhao, B. Ultrastrong Alkali–Resisting Lanthanide–Zeolites Assembled by [Ln60] Nanocages. J. Am. Chem. Soc. 2015, 137 (51), 15988–15991. https://doi.org/10.1021/jacs.5b10000.

Falcaro, P.; Ricco, R.; Yazdi, A.; Imaz, I.; Furukawa, S.; Maspoch, D.; Ameloot, R.; Evans, J. D.; Doonan, C. J. Application of metal and metal oxide nanoparticles@MOFs. Coordination Chemistry Reviews 2016, 307, 237–254. http://dx.doi.org/10.1016/j.ccr.2015.08.002.

Forster, P. M.; Thomas, P. M.; Cheetham, A. K. Biphasic Solvothermal Synthesis: A New Approach for Hybrid Inorganic−Organic Materials. Chem. Mater. 2002, 14 (1), 17–20. https://doi.org/10.1021/cm010820q.

Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238 (5358), 37–38. http://dx.doi.org/10.1038/238037a0.

Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The Chemistry and Applications of Metal–Organic Frameworks. Science, 2013, 341 (6149), 1230444. https://doi.org/10.1126/science.1230444.

Gang, D.; Uddin Ahmad, Z.; Lian, Q.; Yao, L.; Zappi, M. E. A review of adsorptive remediation of environmental pollutants from aqueous phase by ordered mesoporous carbon. Chemical Engineering Journal 2021, 403, 126286. https://doi.org/10.1016/j.cej.2020.126286.

George, P.; Dhabarde, N. R.; Chowdhury, P. Rapid synthesis of Titanium based Metal Organic framework (MIL–125) via microwave route and its performance evaluation in photocatalysis. Materials Letters 2017, 186, 151–154. https://doi.org/10.1016/j.matlet.2016.09.099.

Guimarães, J. R.; Turato Farah, C. R.; Maniero, M. G.; Fadini, P. S. Degradation of formaldehyde by advanced oxidation processes. Journal of Environmental Management 2012, 107, 96–101. https://doi.org/10.1016/j.jenvman.2012.04.024.

Han, C.; Quan, Q.; Chen, H. M.; Sun, Y.; Xu, Y. J. Progressive Design of Plasmonic Metal–Semiconductor Ensemble toward Regulated Charge Flow and Improved Vis–NIR–Driven Solar–to–Chemical Conversion. Small 2017, 13 (14), 1602947. http://dx.doi.org/10.1002/smll.201602947.

Han, T.; Xiao, Y.; Tong, M.; Huang, H.; Liu, D.; Wang, L.; Zhong, C. Synthesis of CNT@MIL–68(Al) composites with improved adsorption capacity for phenol in aqueous solution. Chemical Engineering Journal 2015, 275, 134–141. https://doi.org/10.1016/j.cej.2015.04.005.

Helaïli, N.; Bessekhouad, Y.; Bouguelia, A.; Trari, M. Visible light degradation of Orange II using xCuyOz/TiO2 heterojunctions. Journal of Hazardous Materials 2009, 168 (1), 484–492. http://dx.doi.org/10.1016/j.jhazmat.2009.02.066.

Horiuchi, Y.; Toyao, T.; Saito, M.; Mochizuki, K.; Iwata, M.; Higashimura, H.; Anpo, M.; Matsuoka, M. Visible–Light–Promoted Photocatalytic Hydrogen Production by Using an Amino–Functionalized Ti(IV) Metal–Organic Framework. J. Phys. Chem. C 2012, 116 (39), 20848–20853. http://dx.doi.org/10.1021/jp3046005.

Hu, P.; Liang, X.; Yaseen, M.; Sun, X.; Tong, Z.; Zhao, Z.; Zhao, Z. Preparation of highly–hydrophobic novel N–coordinated UiO–66(Zr) with dopamine via fast mechano–chemical method for (CHO–/Cl–)–VOCs competitive adsorption in humid environment. Chemical Engineering Journal 2018a, 332, 608–618. https://doi.org/10.1016/j.cej.2017.09.115.

Hu, Y.; Xie, X.; Wang, X.; Wang, Y.; Zeng, Y.; Pui, D. Y. H.; Sun, J. Visible–Light Upconversion Carbon Quantum Dots Decorated TiO2 for the Photodegradation of Flowing Gaseous Acetaldehyde. Applied Surface Science 2018b, 440, 266–274. https://doi.org/10.1016/j.apsusc.2018.01.104.

Jansson, I.; Suárez, S.; Garcia–Garcia, F. J.; Sánchez, B. Zeolite–TiO2 hybrid composites for pollutant degradation in gas phase. Applied Catalysis B: Environmental 2015, 178, 100–107. http://dx.doi.org/10.1016/j.apcatb.2014.10.022.

Jeong, J.; Sekiguchi, K.; Lee, W.; Sakamoto, K. Photodegradation of gaseous volatile organic compounds (VOCs) using TiO2 photoirradiated by an ozone–producing UV lamp: decomposition characteristics, identification of by–products and water–soluble organic intermediates. Journal of Photochemistry and Photobiology A: Chemistry 2005, 169 (3), 279–287. http://dx.doi.org/10.1016/j.jphotochem.2004.07.014.

Jiao, L.; Seow, J. Y. R.; Skinner, W. S.; Wang, Z. U.; Jiang, H. L. Metal–organic frameworks: Structures and functional applications. Materials Today 2019, 27, 43–68. http://dx.doi.org/10.1016/j.mattod.2018.10.038.

Karthik, P.; Balaraman, E.; Neppolian, B. Efficient solar light–driven H2 production: post–synthetic encapsulation of a Cu2O co–catalyst in a metal–organic framework (MOF) for boosting the effective charge carrier separation. Catal. Sci. Technol. 2018, 8 (13), 3286–3294. http://dx.doi.org/10.1039/C8CY00604K.

Kim, B.; Lee, Y. R.; Kim, H. Y.; Ahn, W. S. Adsorption of volatile organic compounds over MIL–125–NH2. Polyhedron 2018, 154, 343–349. https://doi.org/10.1016/j.poly.2018.08.010.

Koelsch, M.; Cassaignon, S.; Ta Thanh Minh, C.; Guillemoles, J. F.; Jolivet, J. P. Electrochemical comparative study of titania (anatase, brookite and rutile) nanoparticles synthesized in aqueous medium. Thin Solid Films 2004, 451–452, 86–92. http://dx.doi.org/10.1016/j.tsf.2003.11.150.

Kondo, Y.; Yoshikawa, H.; Awaga, K.; Murayama, M.; Mori, T.; Sunada, K.; Bandow, S.; Iijima, S. Preparation, Photocatalytic Activities, and Dye–Sensitized Solar–Cell Performance of Submicron–Scale TiO2 Hollow Spheres. Langmuir 2008, 24 (2), 547–550. http://dx.doi.org/10.1021/la702157r.

Lan, J.; Wang, Y.; Huang, B.; Xiao, Z.; Wu, P. Application of polyoxometalates in photocatalytic degradation of organic pollutants. Nanoscale Adv. 2021, 3 (16), 4646–4658. https://doi.org/10.1021/acssuschemeng.9b00155.

Li, H.; Bian, Z.; Zhu, J.; Zhang, D.; Li, G.; Huo, Y.; Li, H.; Lu, Y. Mesoporous Titania Spheres with Tunable Chamber Stucture and Enhanced Photocatalytic Activity. J. Am. Chem. Soc. 2007, 129 (27), 8406–8407. http://dx.doi.org/10.1021/ja072191c.

Li, R.; Hu, J.; Deng, M.; Wang, H.; Wang, X.; Hu, Y.; Jiang, H. L.; Jiang, J.; Zhang, Q.; Xie, Y.; Xiong, Y. Integration of an Inorganic Semiconductor with a Metal–Organic Framework: A Platform for Enhanced Gaseous Photocatalytic Reactions. Advanced Materials 2014, 26 (28), 4783–4788. https://doi.org/10.1002/adma.201400428.

Li, X.; Yu, J.; Jaroniec, M. Hierarchical photocatalysts. Chem. Soc. Rev. 2016, 45 (9), 2603–2636. http://dx.doi.org/10.1039/C5CS00838G.

Li, Y.; Hwang, D. S.; Lee, N. H.; Kim, S. J. Synthesis and characterization of carbon–doped titania as an artificial solar light sensitive photocatalyst. Chemical Physics Letters 2005, 404 (1), 25–29. http://dx.doi.org/10.1016/j.cplett.2005.01.062.

Lin, W.; Xie, X.; Wang, X.; Wang, Y.; Segets, D.; Sun, J. Efficient adsorption and sustainable degradation of gaseous acetaldehyde and o–xylene using rGO–TiO2 photocatalyst. Chemical Engineering Journal, 2018, 349, 708–718. http://dx.doi.org/10.1016/j.cej.2018.05.107.

Liu, H.; Tan, X.; Jingheng, G.; Xiaohui, L.; Qilai, X.; Shuona, C. Bioremediation of oil–contaminated soil by combination of soil conditioner and microorganism. Journal of Soils and Sediments 2020, 20 (4), 2121–2129. https://doi.org/10.1007/s11368-020-02591-6.

Low, J. J.; Benin, A. I.; Jakubczak, P.; Abrahamian, J. F.; Faheem, S. A.; Willis, R. R. Virtual High Throughput Screening Confirmed Experimentally: Porous Coordination Polymer Hydration. J. Am. Chem. Soc. 2009, 131 (43), 15834–15842. https://doi.org/10.1021/ja9061344.

Mamaghani, A. H.; Haghighat, F.; Lee, C. S. Photocatalytic oxidation technology for indoor environment air purification: The state–of–the–art. Applied Catalysis B: Environmental 2017, 203, 247–269. http://dx.doi.org/10.1016/j.apcatb.2016.10.037.

Niu, P.; Zhang, L.; Liu, G.; Cheng, H. M. Graphene–Like Carbon Nitride Nanosheets for Improved Photocatalytic Activities. Advanced Functional Materials 2012, 22 (22), 4763–4770. http://dx.doi.org/10.1002/adfm.201200922.

Nosaka, Y.; Nosaka, A. Y. Generation and Detection of Reactive Oxygen Species in Photocatalysis. Chem. Rev. 2017, 117 (17), 11302–11336. http://dx.doi.org/10.1021/acs.chemrev.7b00161.

Obregón, S.; Kubacka, A.; Fernández–García, M.; Colón, G. High–performance Er3+–TiO2 system: Dual up–conversion and electronic role of the lanthanide. Journal of Catalysis 2013, 299, 298–306. http://dx.doi.org/10.1016/j.jcat.2012.12.021.

Okoh, E. Clean–up of crude oil–contaminated soils: bioremediation option. International Journal of Environmental Science and Technology 2020. https://doi.org/10.1007/s13762-019-02605-y.

Reszczyńska, J.; Grzyb, T.; Sobczak, J. W.; Lisowski, W.; Gazda, M.; Ohtani, B.; Zaleska, A. Visible light activity of rare earth metal doped (Er3+, Yb3+ or Er3+/Yb3+) titania photocatalysts. Applied Catalysis B: Environmental 2015, 163, 40–49. http://dx.doi.org/10.1016/j.apcatb.2014.07.010.

Réti, B.; Kiss, G. I.; Gyulavári, T.; Baan, K.; Magyari, K.; Hernadi, K. Carbon sphere templates for TiO2 hollow structures: Preparation, characterization and photocatalytic activity. Catalysis Today 2017, 284, 160–168. http://dx.doi.org/10.1016/j.cattod.2016.11.038.

Samanta, P.; Desai, A. V.; Let, S.; Ghosh, S. K. Advanced Porous Materials for Sensing, Capture and Detoxification of Organic Pollutants toward Water Remediation. ACS Sustainable Chem. Eng. 2019, 7 (8), 7456–7478. https://doi.org/10.1021/acssuschemeng.9b00155.

Skjevrak, I.; Due, A.; Gjerstad, K. O.; Herikstad, H. Volatile organic components migrating from plastic pipes (HDPE, PEX and PVC) into drinking water. Water Research 2003, 37 (8), 1912–1920. https://doi.org/10.1016/S0043-1354(02)00576-6.

Slater, A. G.; Cooper, A. I. Function–led design of new porous materials. Science 2015, 348 (6238), aaa8075. https://doi.org/10.1126/science.aaa8075.

Sun, J.; Zhang, H.; Guo, L. H.; Zhao, L. Two–Dimensional Interface Engineering of a Titania–Graphene Nanosheet Composite for Improved Photocatalytic Activity. ACS Appl. Mater. Interfaces 2013, 5 (24), 13035–13041. http://dx.doi.org/10.1021/am403937y.

Tian, Y.; Tatsuma, T. Mechanisms and Applications of Plasmon–Induced Charge Separation at TiO2 Films Loaded with Gold Nanoparticles. J. Am. Chem. Soc. 2005, 127 (20), 7632–7637. http://dx.doi.org/10.1021/ja042192u.

Ullah, S.; Ferreira–Neto, E. P.; Pasa, A. A.; Alcântara, C. C. J.; Acuña, J. J. S.; Bilmes, S. A.; Martínez Ricci, M. L.; Landers, R.; Fermino, T. Z.; Rodrigues–Filho, U. P. Enhanced photocatalytic properties of core@shell SiO2@TiO2 nanoparticles. Applied Catalysis B: Environmental 2015, 179, 333–343. http://dx.doi.org/10.1016/j.apcatb.2015.05.036.

Vellingiri, K.; Kumar, P.; Deep, A.; Kim, K. H. “Metal–organic frameworks for the adsorption of gaseous toluene under ambient temperature and pressure”. Chemical Engineering Journal, 2017, 307, 1116–1126. https://doi.org/10.1016/j.cej.2016.09.012.

Wang, H.; Gao, H.; Chen, M.; Xu, X.; Wang, X.; Pan, C.; Gao, J. Microwave–assisted synthesis of reduced graphene oxide/titania nanocomposites as an adsorbent for methylene blue adsorption. Applied Surface Science 2016, 360, 840–848. https://doi.org/10.1016/j.apsusc.2015.11.075.

Wang, H.; Liu, X.; Niu, P.; Wang, S.; Shi, J.; Li, L. Porous Two–Dimensional Materials for Photocatalytic and Electrocatalytic Applications. Matter, 2020, 2 (6), 1377–1413. http://dx.doi.org/10.1016/j.matt.2020.04.002.

Wang, H.; Yuan, X.; Wu, Y.; Zeng, G.; Chen, X.; Leng, L.; Wu, Z.; Jiang, L.; Li, H. Facile synthesis of amino–functionalized titanium metal–organic frameworks and their superior visible–light photocatalytic activity for Cr(VI) reduction. Journal of Hazardous Materials 2015, 286, 187–194. https://doi.org/10.1016/j.jhazmat.2014.11.039.

Wen, J.; Li, X.; Liu, W.; Fang, Y.; Xie, J.; Xu, Y. Photocatalysis fundamentals and surface modification of TiO2 nanomaterials. Chinese Journal of Catalysis 2015, 36 (12), 2049–2070. http://dx.doi.org/10.1016/S1872–2067(15)60999–8.

Weon, S.; Kim, J.; Choi, W. Dual–components modified TiO2 with Pt and fluoride as deactivation–resistant photocatalyst for the degradation of volatile organic compound. Applied Catalysis B: Environmental 2018, 220, 1–8. http://dx.doi.org/10.1016/j.apcatb.2017.08.036.

WHO, WHO guidelines for indoor air quality: selected pollutants. World Health Organization: Geneva, Switzerland, 2010.

Xu, C.; Killmeyer, R.; Gray, M. L.; Khan, S. U. M. Photocatalytic effect of carbon–modified n–TiO2 nanoparticles under visible light illumination. Applied Catalysis B: Environmental 2006, 64 (3), 312–317. http://dx.doi.org/10.1016/j.apcatb.2005.11.008.

Yeh, T. F.; Teng, C. Y.; Chen, L. C.; Chen, S. J.; Teng, H. Graphene oxide–based nanomaterials for efficient photoenergy conversion. J. Mater. Chem. A 2016, 4 (6), 2014–2048. http://dx.doi.org/10.1039/C5TA07780J.

Zeng, Q.; Xie, X.; Wang, X.; Wang, Y.; Lu, G.; Pui, D. Y. H.; Sun, J. Enhanced photocatalytic performance of Ag@TiO2 for the gaseous acetaldehyde photodegradation under fluorescent lamp. Chemical Engineering Journal 2018, 341, 83–92. http://dx.doi.org/10.1016/j.cej.2018.02.015.

Zeng, X.; Huang, L.; Wang, C.; Wang, J.; Li, J.; Luo, X. Sonocrystallization of ZIF–8 on Electrostatic Spinning TiO2 Nanofibers Surface with Enhanced Photocatalysis Property through Synergistic Effect. ACS Appl. Mater. Interfaces 2016, 8 (31), 20274–20282. https://doi.org/10.1021/acsami.6b05746.

Zhang, P.; Sun, H.; Ren, C.; Min, L.; Zhang, H. Sorption mechanisms of neonicotinoids on biochars and the impact of deashing treatments on biochar structure and neonicotinoids sorption. Environmental Pollution 2018, 234, 812–820. https://doi.org/10.1016/j.envpol.2017.12.013.

Zhang, X.; Yang, Y.; Lv, X.; Wang, Y.; Liu, N.; Chen, D.; Cui, L. Adsorption/desorption kinetics and breakthrough of gaseous toluene for modified microporous–mesoporous UiO–66 metal organic framework. Journal of Hazardous Materials 2019a, 366, 140–150. https://doi.org/10.1016/j.jhazmat.2018.11.099.

Zhang, X.; Yang, Y.; Song, L.; Chen, J.; Yang, Y.; Wang, Y. Enhanced adsorption performance of gaseous toluene on defective UiO–66 metal organic framework: Equilibrium and kinetic studies. Journal of Hazardous Materials 2019b, 365, 597–605. https://doi.org/10.1016/j.jhazmat.2018.11.049.

Zhou, W.; Yin, Z.; Du, Y.; Huang, X.; Zeng, Z.; Fan, Z.; Liu, H.; Wang, J.; Zhang, H. Synthesis of Few–Layer MoS2 Nanosheet–Coated TiO2 Nanobelt Heterostructures for Enhanced Photocatalytic Activities. Small 2013, 9 (1), 140–147. http://dx.doi.org/10.1002/smll.201201161.

Downloads

Published

2024-08-09

Issue

Section

ALTERNATIVE TREATMENT TECHNOLOGIES