MODERN APPROACHES TO MONITORING THE CONTENT OF HEAVY METALS IN MARINE WATERS

Authors

DOI:

https://doi.org/10.20535/2218-930022025348565

Keywords:

aquatic environment, heavy metals, pollutant detection, water pollution, water quality

Abstract

The article describes the sources of pollution of sea water with heavy metal compounds, including copper, chromium, tin, nickel and cobalt ions, their impact on the ecosystem, as well as possible methods of detecting these pollutants. In Ukraine, before the start of hostilities, were river runoff and the discharge of insufficiently treated industrial wastewater were the main sources of heavy metal compounds entering the Black Sea and the Sea of Azov. After the start of the war, industry in the southern regions experienced a reduction in volumes, but a new source of pollution appeared, namely sunken military equipment, shells, mines, cartridges, etc. Alloys with a high content of various heavy metals are widely used in military equipment and weapons to give the alloys corrosion resistance and the necessary mechanical characteristics. With prolonged exposure to water, as a result of interaction with both the water itself and with impurities dissolved in it or existing microorganisms, metal ions are gradually leached into the water. Heavy metals not only harm marine biota, but also have the properties of bioaccumulation and biomagnification. As a result, the content of heavy metals in predatory fish and marine mammals increases significantly, and commercial fishing is threatened due to the possible non-compliance of the caught fish with sanitary and hygienic requirements. In order to timely detect and eliminate sources of pollution of marine waters with heavy metals, constant monitoring of the quality of marine waters is necessary. There are a large number of monitoring tools, including electrochemical sensors, but one of the fastest, cheapest and most convenient approaches is the use of indicator systems based on chromogenic compounds that change their color upon contact with a certain pollutant. The article considers examples of such compounds for the detection of copper, chromium, tin and nickel ions.

References

Aguiar, J. I. S.; Ribeiro, S. O.; Leite, A.; Rangel, M.; Rangel, A. O. S. S.; Mesquita, R. B. R. Use of a rhodamine-based chelator in a microfluidic paper-based analytical device for the in-situ copper quantification in natural waters. Talanta 2024, 271, 125683. https://doi.org/10.1016/j.talanta.2024.125683.

Alluhayb, A. H.; Younis, A. M.; Babalghith, A. O.; Amin, A. S. Eco-friendly optical sensor membrane for nickel ion detection in water and food samples. Results in Chemistry 2025, 13, 102007. https://doi.org/10.1016/j.rechem.2024.102007.

Arcos, C.; Ramos-Grez, J. A.; Sancy, M.; La Fé-Perdomo, I.; Setchi, R.; Guerra, C. Suitability of nickel aluminium bronze alloy fabricated by laser powder bed fusion to be used in the marine environment. Corrosion Science 2023, 226, 111656. https://doi.org/10.1016/j.corsci.2023.111656.

Askerova, Z. G.; Zalov, A. Z.; Rasulov, C. K. Highly Selective and Sensitive Extraction-Photometric Method for the Determination of Nickel (II) in Water, Oil and Petroleum Products of Baku. Pet. Process. Oil-Refin. 2022, 23 (4), 544–555.

Awasthi, Y.; Ratn, A.; Prasad, R.; Kumar, M.; Trivedi, S. P. An in vivo analysis of Cr6+ induced biochemical, genotoxicological and transcriptional profiling of genes related to oxidative stress, DNA damage and apoptosis in liver of fish, Channa punctatus (Bloch, 1793). Aquatic Toxicology 2018, 200, 158–167. https://doi.org/10.1016/j.aquatox.2018.05.001.

Begum, W.; Rai, S.; Banerjee, S.; Bhattacharjee, S.; Mondal, M. H.; Bhattarai, A.; Saha, B. A comprehensive review on the sources, essentiality and toxicological profile of nickel. RSC Advances 2022, 12 (15), 9139–9153. https://doi.org/10.1039/d2ra00378c.

Biswas, P.; Karn, A. K.; Balasubramanian, P.; Kale, P. G. Biosensor for detection of dissolved chromium in potable water: A review. Biosensors and Bioelectronics 2017, 94, 589–604. https://doi.org/10.1016/j.bios.2017.03.043.

Caroline, M.; Aziz, O.; Fabienne, B. B.; Nathalie, G. J. P. G.; Mireille, B.; Ioannis, I. Biosens. Bioelectron. 2006, 22 (2), 285–290.

Cempel, M.; Nikel, G. Nickel: A Review of Its Sources and Environmental Toxicology. Polish J. of Environ. Stud. 2006, 15(3), 375–382.

Çevik, K.; Yildiz, İ.; Yildiz, A.; Nas, M. S.; Alma, M. H.; Calimli, M. H. PdRuO2/PVP nanomaterial as a highly selective, stable, and applicable potentiometric sensor for the detection of Cr3+. Microchimica Acta 2024, 191 (8), 467. https://doi.org/10.1007/s00604-024-06543-6.

DeForest, D. K.; Schlekat, C. E. Species sensitivity distribution evaluation for chronic nickel toxicity to marine organisms. Integrated Environmental Assessment and Management 2013, 9 (4), 580–589. https://doi.org/10.1002/ieam.1419.

Dong, B.; Liu, W.; Zhang, T.; Chen, L.; Fan, Y.; Zhao, Y.; Li, H.; Yang, W.; Sun, Y. Clarifying the effect of a small amount of Cr content on the corrosion of Ni-Mo steel in tropical marine atmospheric environment. Corrosion Science 2022, 210, 110813. https://doi.org/10.1016/j.corsci.2022.110813.

Güell, R.; Fontàs, C.; Salvadó, V.; Anticó, E. Development of a selective optical sensor for Cr(VI) monitoring in polluted waters. Analytica Chimica Acta 2007, 594 (2), 162–168. https://doi.org/10.1016/j.aca.2007.05.041.

Gupta, V. K.; Jain, A. K.; Kumar, P.; Agarwal, S.; Maheshwari, G. Chromium(III)-selective sensor based on tri-o-thymotide in PVC matrix. Sensors and Actuators B Chemical 2005, 113 (1), 182–186. https://doi.org/10.1016/j.snb.2005.02.046.

Halysh, V.; Trus, I.; Gomelya, M.; Trembus, I.; Pasalskiy, B.; Chykun, N.; Trokhymenko, G.; Remeshevska, I. Utilization of Modified Biosorbents Based on Walnut Shells in the Processes of Wastewater Treatment from Heavy Metal Ion. Journal of Ecological Engineering 2020, 21 (4), 128–133. https://doi.org/10.12911/22998993/119809.

Heryanto, R.; Rohaeti, E.; Wulansari, L.; Arif, Z.; Wahyuni, W. T.; Putra, B. R. Potentiometric sensor for chromium(VI) using a composite of diphenylcarbazide-natural zeolite-modified membrane electrodes. ScienceAsia 2022, 48 (4), 434. https://doi.org/10.2306/scienceasia1513-1874.2022.068.

Hilali, N.; Mohammadi, H.; Amine, A.; Zine, N.; Errachid, A. Recent advances in electrochemical monitoring of chromium. Sensors 2020, 20 (18), 5153. https://doi.org/10.3390/s20185153.

Hu, T.; Ye, C.; Ning, Z.; Liu, T.; Mu, W. Effect of Toxicity of Chromium (VI) Stressors Alone and Combined to High Temperature on the Histopathological, Antioxidation, Immunity, and Energy Metabolism in Fish Phoxinus lagowskii. Fishes 2024, 9 (5), 168. https://doi.org/10.3390/fishes9050168.

Hunt, J. W.; Anderson, B. S.; Phillips, B. M.; Tjeerdema, R. S.; Puckett, H. M.; Stephenson, M.; Tucker, D. W.; Watson, D. Acute and chronic toxicity of nickel to marine organisms: Implications for water quality criteria. Environmental Toxicology and Chemistry 2002, 21 (11), 2423–2430. https://doi.org/10.1002/etc.5620211122.

Kamila, S.; Shaw, P.; Islam, S.; Chattopadhyay, A. Ecotoxicology of hexavalent chromium in fish: An updated review. The Science of the Total Environment 2023, 890, 164395. https://doi.org/10.1016/j.scitotenv.2023.164395.

Kamnoet, P.; Aeungmaitrepirom, W.; Menger, R. F.; Henry, C. S. Highly selective simultaneous determination of Cu(ii), Co(ii), Ni(ii), Hg(ii), and Mn(ii) in water samples using microfluidic paper-based analytical devices. The Analyst 2021, 146 (7), 2229–2239. https://doi.org/10.1039/d0an02200d.

Korshoj, L. E.; Zaitouna, A. J.; Lai, R. Y. Methylene Blue-Mediated Electrocatalytic detection of hexavalent chromium. Analytical Chemistry 2015, 87 (5), 2560–2564. https://doi.org/10.1021/acs.analchem.5b00197.

Kyrii, S.; Litynska, M.; Misevych, A. The War Impact on Ukraine’s Marine Environment. Water&Water Purification Technologies. Scientific and Technical News 2024, 38 (1), 50–64. https://doi.org/10.20535/2218-930012024316112.

Lace, A.; Ryan, D.; Bowkett, M.; Cleary, J. Chromium monitoring in water by colorimetry using optimised 1,5-Diphenylcarbazide method. International Journal of Environmental Research and Public Health 2019, 16 (10), 1803. https://doi.org/10.3390/ijerph16101803.

Litynska, M.; Pelekhata. O. The influence of the war on the content of some components in the rivers of Ukraine. IOP Conference Series: Earth and Environmental Science 2024, 1415, 012094. https://doi.org/10.1088/1755-1315/1415/1/012094

Madrakian, T.; Afkhami, A.; Moein, R.; Bahram, M. Simultaneous spectrophotometric determination of Sn(II) and Sn(IV) by mean centering of ratio kinetic profiles and partial least squares methods. Talanta 2007, 72 (5), 1847–1852. https://doi.org/10.1016/j.talanta.2007.02.023.

Mohamed, M. E. B.; Frag, E. Y.; Marzouk, H. A. A validated potentiometric method for the rapid determination of chromium ions content in food samples using a portable graphite sensor. Food Chemistry 2021, 363, 130324. https://doi.org/10.1016/j.foodchem.2021.130324.

Mohanty, S. P.; Kougianos, E. Biosensors: a tutorial review. IEEE Potentials 2006, 25 (2), 35–40. https://doi.org/10.1109/mp.2006.1649009.

Muñoz-Sandoval, M. J.; Vicente-Martínez, Y.; Hernández-Córdoba, M.; López-García, I. Combination of a magnetic ionic liquid and magnetic particles for the determination of Pb(II) and Sn(IV) using electrothermal atomic absorption spectrometry. Spectrochimica Acta Part B Atomic Spectroscopy 2024, 216, 106947. https://doi.org/10.1016/j.sab.2024.106947.

Nepomuscene, N. J.; Daniel, D.; Krastanov, A. Biosensor to detect chromium in wastewater. Biotechnology & Biotechnological Equipment 2007, 21 (3), 377–381. https://doi.org/10.1080/13102818.2007.10817477.

Ni, X.; Wan, L.; Liang, P.; Zheng, R.; Lin, Z.; Chen, R.; Pei, M.; Shen, Y. The acute toxic effects of hexavalent chromium on the liver of marine medaka (Oryzias melastigma). Comparative Biochemistry and Physiology Part C Toxicology & Pharmacology 2020, 231, 108734. https://doi.org/10.1016/j.cbpc.2020.108734.

Niloy, H. K.; Chowdhury, A. I.; Islam, Md. S.; Pervez, A.; Asseri, A. H.; Alsohibany, K. S.; Molla, M. H. R.; Rahman, M. A.; Uddin, M. S. Bioaccumulation of heavy metals in water and mollusks in the Karnafully estuary: Potential human health risk and environmental contamination. Regional Studies in Marine Science 2024, 78, 103752. https://doi.org/10.1016/j.rsma.2024.103752.

Omdehghiasi, H.; Yeganeh-Bakhtiary, A.; Korayem, A. H. Comprehensive study on copper adsorption using an innovative graphene carbonate sand composite adsorbent: Batch, fixed-bed columns, and CFD modeling insights. Chemical Engineering and Processing - Process Intensification 2024, 206, 110047. https://doi.org/10.1016/j.cep.2024.110047.

Ostrakhovitch, E. A. Tin. In Elsevier eBooks; 2022; pp 807–856. https://doi.org/10.1016/b978-0-12-822946-0.00029-5.

Paisuwan, W.; Srithadindang, K.; Kodama, T.; Sukwattanasinitt, M.; Tobisu, M.; Ajavakom, A. Cu(II) detection by a fluorometric probe based on thiazoline-amidoquinoline derivative and its application to water and food samples. Spectrochimica Acta Part a Molecular and Biomolecular Spectroscopy 2024, 322, 124706. https://doi.org/10.1016/j.saa.2024.124706.

Paniagua, A. R.; Vazquez, M. D.; Tascon, M. L.; Batanero, P. S. Determination of chromium(VI) and chromium(III) by using a diphenylcarbazide‐modified carbon paste electrode. Electroanalysis 1993, 5 (2), 155–163. https://doi.org/10.1002/elan.1140050211.

Prasad, S.; Yadav, K. K.; Kumar, S.; Gupta, N.; Cabral-Pinto, M. M. S.; Rezania, S.; Radwan, N.; Alam, J. Chromium contamination and effect on environmental health and its remediation: A sustainable approaches. Journal of Environmental Management 2021, 285, 112174. https://doi.org/10.1016/j.jenvman.2021.112174.

Qambrani, N. A.; Shin, B.-S.; Cho, J.-S.; Oh, S.-E. Assessment of chromium-contaminated groundwater using a thiosulfate-oxidizing bacteria (TOB) biosensor. Chemosphere 2013, 104, 32–36. https://doi.org/10.1016/j.chemosphere.2013.10.032.

Ray, S.; Vashishth, R. From water to plate: Reviewing the bioaccumulation of heavy metals in fish and unraveling human health risks in the food chain. Emerging Contaminants 2024, 10 (4), 100358. https://doi.org/10.1016/j.emcon.2024.100358.

Robert-Peillard, F.; Mouchtari, E. M. E.; Bonne, D.; Humbel, S.; Boudenne, J.-L.; Coulomb, B. Determination of dissolved nickel in natural waters using a rapid microplate fluorescence assay method. Spectrochimica Acta Part a Molecular and Biomolecular Spectroscopy 2022, 275, 121170. https://doi.org/10.1016/j.saa.2022.121170.

Saidon, N. B.; Szabó, R.; Budai, P.; Lehel, J. Trophic transfer and biomagnification potential of environmental contaminants (heavy metals) in aquatic ecosystems. Environmental Pollution 2023, 340 (Pt 1), 122815. https://doi.org/10.1016/j.envpol.2023.122815.

Salimi, A.; Pourbahram, B.; Mansouri-Majd, S.; Hallaj, R. Manganese oxide nanoflakes/multi-walled carbon nanotubes/chitosan nanocomposite modified glassy carbon electrode as a novel electrochemical sensor for chromium (III) detection. Electrochimica Acta 2014, 156, 207–215. https://doi.org/10.1016/j.electacta.2014.12.146.

Shah, S. B. Heavy Metals in the Marine Environment—An Overview. In SpringerBriefs in earth sciences; 2021; pp 1–26. https://doi.org/10.1007/978-3-030-73613-2_1.

Sharifi, H.; Tashkhourian, J.; Hemmateenejad, B. A 3D origami paper-based analytical device combined with PVC membrane for colorimetric assay of heavy metal ions: Application to determination of Cu(II) in water samples. Analytica Chimica Acta 2020, 1126, 114–123. https://doi.org/10.1016/j.aca.2020.06.006.

Shukla, S.; Mbingwa, G.; Khanna, S.; Dalal, J.; Sankhyan, D.; Malik, A.; Badhwar, N. Environment and health hazards due to military metal pollution: A review. Environmental Nanotechnology Monitoring & Management 2023, 20, 100857. https://doi.org/10.1016/j.enmm.2023.100857.

Speer, R. M.; Wise, S. S.; Croom-Perez, T. J.; Aboueissa, A.-M.; Martin-Bras, M.; Barandiaran, M.; Bermúdez, E.; Wise, J. P. A comparison of particulate hexavalent chromium cytotoxicity and genotoxicity in human and leatherback sea turtle lung cells from a one environmental health perspective. Toxicology and Applied Pharmacology 2019, 376, 70–81. https://doi.org/10.1016/j.taap.2019.05.013.

Standard Methods for the Examination of Water and Wastewater, 2nd ed.; American Public Health Association: Washington, DC, 1915; Vol. 2, pp 420–426.

Sun, B.; Ye, T.; Feng, Q.; Yao, J.; Wei, M. Accelerated Degradation Test and Predictive Failure Analysis of B10 Copper-Nickel Alloy under Marine Environmental Conditions. Materials 2015, 8 (9), 6029–6042. https://doi.org/10.3390/ma8095290.

Trigo-López, M.; Muñoz, A.; Ibeas, S.; Serna, F.; García, F. C.; García, J. M. Colorimetric detection and determination of Fe(III), Co(II), Cu(II) and Sn(II) in aqueous media by acrylic polymers with pendant terpyridine motifs. Sensors and Actuators B Chemical 2015, 226, 118–126. https://doi.org/10.1016/j.snb.2015.11.116.

Ubaydullayeva, S.; Sodikov, U.; Yunusova, N.; Amirov, A. Selection of Optimal Conditions for Complex Combination of Nickel (II) Ion with Dimethylglyoxime Reagent. Am. J. Appl. Sci. Technol. 2022, 2 (04), 29–34. https://doi.org/10.37547/ajast/Volume02Issue04-04.

Wang, Z.; Yeung, K. W. Y.; Zhou, G.-J.; Yung, M. M. N.; Schlekat, C. E.; Garman, E. R.; Gissi, F.; Stauber, J. L.; Middleton, E. T.; Wang, Y. Y. L.; Leung, K. M. Y. Acute and chronic toxicity of nickel on freshwater and marine tropical aquatic organisms. Ecotoxicology and Environmental Safety 2020, 206, 111373. https://doi.org/10.1016/j.ecoenv.2020.111373.

Wiryawan, A.; Retnowati, R.; Burhan, R. Y. P.; Syekhfani. Method of Analysis for Determination of the Chromium (Cr) Species in Water Samples by Spectrophotometry with Diphenylcarbazide. J. Environ. Eng. Sustainable Technol. 2018, 5 (1), 37–46.

Wu, X.; Jiang, W.; Yu, K.; Xu, S.; Yang, H.; Wang, N.; Wei, C.; Feng, C.; Sun, Y.; Xie, S. Coral-inferred historical changes of nickel emissions related to industrial and transportation activities in the Beibu Gulf, northern South China Sea. Journal of Hazardous Materials 2021, 424 (Pt B), 127422. https://doi.org/10.1016/j.jhazmat.2021.127422.

Yadav, P.; Kumar, V. Adverse effect of chromium (VI) on genotoxicity, histology of brain and behavioral patterns of fish Channa punctatus (Bloch, 1793). International Journal of Fisheries and Aquatic Studies 2023, 11 (4), 41–49. https://doi.org/10.22271/fish.2023.v11.i4a.2824.

Zalov, A. Z.; İsgenderova, K. O.; Askerova, Z. G. Spectrophotometric research into interaction nickel (II) with 1-(2-pyridylazo)-2-hydroxy-4-mercaptofenol and aminofenols. Chemical Problems 2021, 19 (3), 150–159. https://doi.org/10.32737/2221-8688-2021-3-150-159.

Zamani, H. A.; Sahebnasagh, S. Potentiometric detection of CR3+ ions in solution by a Chromium(III) electrochemical sensor based on diethyl 2-phthalimidomalonate doped in polymeric membrane. International Journal of Electrochemical Science 2013, 8 (3), 3708–3720. https://doi.org/10.1016/s1452-3981(23)14425-7.

Downloads

Published

2025-12-28

How to Cite

Litynska, M., Hutsul, H., & Kyrii, S. (2025). MODERN APPROACHES TO MONITORING THE CONTENT OF HEAVY METALS IN MARINE WATERS. WATER AND WATER PURIFICATION TECHNOLOGIES. SCIENTIFIC AND TECHNICAL NEWS, 42(2), 35–49. https://doi.org/10.20535/2218-930022025348565

Issue

Section

WATER QUALITY AND ANALYSIS METHODS