FUNCTIONAL COATINGS FOR REMOVING PERSISTENT ORGANIC POLLUTANTS IN WATER: CURRENT STATE OF THE ART REVIEW
DOI:
https://doi.org/10.20535/2218-930032025347773Keywords:
adsorption coatings, anti-fouling coatings, catalytic coatings, functional coatings, persistent organic pollutants, water treatmentAbstract
Persistent organic pollutants in water, including per- and polyfluoroalkyl substances, pesticides, dyes, and pharmaceutical residues, are difficult to remove due to their high chemical stability, mobility, and toxicity. Traditional approaches based on the use of bulk sorbents or catalysts are often ineffective due to system pressure drops, material losses, limited on-site regeneration, and difficult integration into compact modular units. This review summarises the current state of functional coatings as immobilised, regenerative and modular-ready platforms for reducing persistent organic pollutants. Adsorption coatings are discussed with a focus on MXenes, layered double hydroxide, metal-organic frameworks / covalent organic framewor films, N-doped carbons, and ion-imprinted polymers, highlighting trade-offs between capacity, selectivity, stability in water, and regeneration pathways. Catalytic coatings for advanced oxidation processes are considered in systems based on g-C3N4, TiO2, BiVO4/BiOBr photocatalysts, M–N–C materials for electro-Fenton processes, and perovskite oxides, with an emphasis on radical generation efficiency and stability in realistic aquatic environments. Antifouling and hydrophilic top layers, including PEG-type polymers and zwitterionic polymers, are considered as elements that ensure long-term efficiency by reducing organic and biological contamination. Finally, the role of carriers (ceramic monoliths, polymer ultrafiltration/reverse osmosis membranes, and metal or textile frames) and multilayer architectures is analysed in terms of adhesion, compatibility between layers, and scalable production. Key unresolved issues include coating durability, resistance to delamination, regeneration strategies that do not generate secondary waste, and harmonised metrics for comparing performance in complex water bodies.
References
Jones, K. C.; de Voogt, P. Persistent organic pollutants (POPs): state of the science. Environmental Pollution 1999, 100 (1-3), 209–221. https://doi.org/10.1016/s0269-7491(99)00098-6
Ucar, D.; Sahinkaya, E.; Sabba, F.; Capua, F. D. Biological denitrification for water detoxification: A review. Chemical Engineering Journal 2025, 163799. https://doi.org/10.1016/j.cej.2025.163799
Derrouiche, S.; Bourdin, D.; Roche, P.; Houssais, B.; Machinal, C.; Coste, M.; Restivo, J.; Órfão, J. J. M.; Pereira, M. F. R.; Marco, Y.; Garcia-Bordeje, E. Process design for wastewater treatment: catalytic ozonation of organic pollutants. Water Science and Technology 2013, 68 (6), 1377–1383. https://doi.org/10.2166/wst.2013.384
Kyrii, S. O.; Kosogina, I. V.; Astrelin, I. M.; Kyrienko, O. U. The efficiency of coagulation treatment wastewater by reagent obtained from waste alumina production. Research Bulletin of the National Technical University of Ukraine "Kyiv Polytechnic Institute" 2015 (6), 95–101. https://doi.org/10.20535/1810-0546.2015.6.51173
Kyrii, S. O.; Kosogina, I. V.; Astrelin, I. M.; Mosiyuk, V. Y. Utilization of "red mud" being a part of new effective adsorbent in water treatment. Water and water purification technologies. Scientific and technical news 2017, 21 (1), 3–11. https://doi.org/10.20535/2218-93002112017121418
Mahdi, M. M.; Ebrahim, S. E. A Review of BiOBr-Based Photocatalysts for Wastewater Treatment. International Journal of Heat and Technology 2024, 42 (1), 219–237. https://doi.org/10.18280/ijht.420123
Guardans, R. Global monitoring of persistent organic pollutants (POPs) in biota, water and sediments: its role in screening for unregulated POPs, in compiling time trends of regulated POPs under the Stockholm Convention (SC) and their relevance for biodiversity in a changing climate. Environmental Science: Advances 2024. https://doi.org/10.1039/d4va00023d
Boulkhessaim, S.; Gacem, A.; Khan, S. H.; Amari, A.; Yadav, V. K.; Harharah, H. N.; Elkhaleefa, A. M.; Yadav, K. K.; Rather, S.-u.; Ahn, H.-J.; Jeon, B.-H. Emerging Trends in the Remediation of Persistent Organic Pollutants Using Nanomaterials and Related Processes: A Review. Nanomaterials 2022, 12 (13), 2148. https://doi.org/10.3390/nano12132148
Mishra, A.; Kumari, M.; Swati; Kumar, R.; Iqbal, K.; Thakur, I. S. Persistent organic pollutants in the environment: Risk assessment, hazards, and mitigation strategies. Bioresource Technology Reports 2022, 101143. https://doi.org/10.1016/j.biteb.2022.101143
Syafrudin, M.; Kristanti, R. A.; Yuniarto, A.; Hadibarata, T.; Rhee, J.; Al-onazi, W. A.; Algarni, T. S.; Almarri, A. H.; Al-Mohaimeed, A. M. Pesticides in Drinking Water—A Review. International Journal of Environmental Research and Public Health 2021, 18 (2), 468. https://doi.org/10.3390/ijerph18020468
Wolfram, J.; Stehle, S.; Bub, S.; Petschick, L. L.; Schulz, R. Insecticide Risk in US Surface Waters: Drivers and Spatiotemporal Modelling. Environmental Science & Technology 2019 53(20), 12071–12080. https://doi.org/10.1021/acs.est.9b04285
O'Hagan, D. Understanding organofluorine chemistry. An introduction to the C–F bond. Chem. Soc. Rev. 2008, 37 (2), 308–319. https://doi.org/10.1039/b711844a
Mukhopadhyay, A.; Duttagupta, S.; Mukherjee, A. Emerging organic contaminants in global community drinking water sources and supply: A review of occurrence, processes and remediation. Journal of Environmental Chemical Engineering 2022, 10 (3), 107560. https://doi.org/10.1016/j.jece.2022.107560
Benkhaya, S.; M' rabet, S.; El Harfi, A. A review on classifications, recent synthesis and applications of textile dyes. Inorganic Chemistry Communications 2020, 115, 107891. https://doi.org/10.1016/j.inoche.2020.107891
Kyrii, S.; Dontsova, T.; Kosogina, I.; Astrelin, I.; Klymenko, N.; Nechyporuk, D. Local Wastewater Treatment by Effective Coagulants Based on Wastes. Journal of Ecological Engineering 2020, 21 (5), 34–41. https://doi.org/10.12911/22998993/122184
Lellis, B.; Fávaro-Polonio, C. Z.; Pamphile, J. A.; Polonio, J. C. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation 2019, 3 (2), 275–290. https://doi.org/10.1016/j.biori.2019.09.001
Hejna, M.; Kapuścińska, D.; Aksmann, A. Pharmaceuticals in the Aquatic Environment: A Review on Eco-Toxicology and the Remediation Potential of Algae. International Journal of Environmental Research and Public Health 2022, 19 (13), 7717. https://doi.org/10.3390/ijerph19137717
Ajala, O. J.; Tijani, J. O.; Salau, R. B.; Abdulkareem, A. S.; Aremu, O. S. A review of emerging micro-pollutants in hospital wastewater: Environmental fate and remediation options. Results in Engineering 2022, 100671. https://doi.org/10.1016/j.rineng.2022.100671
Kyrii S.O.; Kosogina, I.V.; Astrelin, I.M.; Obodenko, L.S. Investigation of activated carbon modified by wastes from alumina production. Questions of Chemistry and Chemical Technology 2018, 2, 70-78.
Kyrii, S.; Maletskyi, Z.; Klymenko, N.; Ratnaweera, H.; Mitchenko, T.; Dontsova, T.; Kosogina, I. Impact of modification by red mud components on the sorption properties of activated carbon. Applied Surface Science Advances 2023, 16, 100412. https://doi.org/10.1016/j.apsadv.2023.100412
Dontsova, T.; Kyrii, S.; Yanushevska, O.; Suprunchuk, V.; Kosogina, I. Physicochemical properties of TIO2, ZrO2, Fe3O4 nanocrystalline adsorbents and photocatalysts. Chemical Papers 2022. https://doi.org/10.1007/s11696-022-02433-4
Kyrii, S.; Dontsova, T.; Kosogina, I.; Podopryhor, V.; Serhiienko, A. Influence of yttrium and niobium oxides modifiers on physicochemical and photocatalytic properties of titanium (IV) oxide. Eastern-European Journal of Enterprise Technologies 2021, 4 (6(112)), 67–74. https://doi.org/10.15587/1729-4061.2021.238347
Kapteijn, F.; Moulijn, J. A. Structured catalysts and reactors – Perspectives for demanding applications. Catalysis Today 2020. https://doi.org/10.1016/j.cattod.2020.09.026
Xu, R.; Qin, S.; Lu, T.; Wang, S.; Chen, J.; He, Z. Engineering Photocatalytic Membrane Reactors for Sustainable Energy and Environmental Applications. Catalysts 2025, 15 (10), 947. https://doi.org/10.3390/catal15100947
Stampi-Bombelli, V.; Storione, A.; Grossmann, Q.; Mazzotti, M. On Comparing Packed Beds and Monoliths for CO2 Capture from Air Through Experiments, Theory, and Modeling. Industrial & Engineering Chemistry Research 2024. https://doi.org/10.1021/acs.iecr.4c01392
Wang, Y.-J.; Senthil Raja, D.; Nguyen, K. N.; Tsai, D.-H. Tailored functional coatings on metal surface using silane-nanoparticle composite colloid. International Journal of Adhesion and Adhesives 2026, 145, 104224. https://doi.org/10.1016/j.ijadhadh.2025.104224
Akbarzadeh, S.; Naderi, R.; Mahdavian, M. Fabrication of a highly protective silane composite coating with limited water uptake utilizing functionalized carbon nano-tubes. Composites Part B: Engineering 2019, 175, 107109. https://doi.org/10.1016/j.compositesb.2019.107109
Antony Jose, S.; Price, J.; Lopez, J.; Perez-Perez, E.; Menezes, P. L. Advances in MXene Materials: Fabrication, Properties, and Applications. Materials 2025, 18 (21), 4894. https://doi.org/10.3390/ma18214894
Hong, W.; Wyatt, B. C.; Nemani, S. K.; Anasori, B. Double transition-metal MXenes: Atomistic design of two-dimensional carbides and nitrides. MRS Bulletin 2020, 45 (10), 850–861. https://doi.org/10.1557/mrs.2020.251
Hadi Dehghani, M.; Hussain Solangi, N.; Mujawar Mubarak, N.; Rajamohan, N.; Bosua, S.; Othmani, A.; Ahmaruzzaman, M.; Ranjan Mishra, S.; Bhattacharjee, B.; Gadore, V.; Hussain Banglani, T.; Waris, N.; hyder, A.; Ali Memon, A.; Hussain Thebo, K.; Joshi, P.; Boczkaj, G.; Rao Karri, R. Mxene-based materials as adsorbents, photocatalysts, membranes and sensors for detection and removal of emerging and gaseous pollutants: A comprehensive review. Arabian Journal of Chemistry 2024, 106052. https://doi.org/10.1016/j.arabjc.2024.106052
Chinmoy, B.; Prarthana, B.; Swapnali, H. MXenes in membrane engineering: Unlocking the new potential for water treatment. Water Supply 2025; 25 (8): 1209–1234. https://doi.org/10.2166/ws.2025.072
Fu, Y.; Fu, X.; Song, W.; Li, Y.; Li, X.; Yan, L. Recent Progress of Layered Double Hydroxide-Based Materials in Wastewater Treatment. Materials 2023, 16 (16), 5723. https://doi.org/10.3390/ma16165723
Pan, Y.; Li, L.; Liu, D.; Wang, F.; Xia, M.; Wang, F. Macroscale structures of layered double hydroxides: A review of formation strategies and applications in water treatment. Journal of Environmental Chemical Engineering 2025, 13 (1), 115284. https://doi.org/10.1016/j.jece.2024.115284
Hadnadjev-Kostic, M.; Vulic, T.; Karanovic, D.; Tomic, A.; Cvetkovic, D. Layered Double Hydroxide-Based Materials for Wastewater Treatment: Recent Progress in Multifunctional Environmental Applications. Processes 2025, 13 (12), 3757. https://doi.org/10.3390/pr13123757
Gao, P.; Mukherjee, S.; Zahid Hussain, M.; Ye, S.; Wang, X.; Li, W.; Cao, R.; Elsner, M.; Fischer, R. A. Porphyrin-based MOFs for sensing environmental pollutants. Chemical Engineering Journal 2024, 492, 152377. https://doi.org/10.1016/j.cej.2024.152377
Cote, A. P. Porous, Crystalline, Covalent Organic Frameworks. Science 2005, 310 (5751), 1166–1170. https://doi.org/10.1126/science.1120411
Islam, I. U.; Hu, X.; Shang, J.; Ashraf, M. A.; Ali, T.; Aslam, A. A.; Li, S.; Li, D.; Nazir, M. S.; Wang, X.; Yabalak, E. MOF and MOF-based membranes: promising solutions for pharmaceutical wastewater treatment. Journal of Materials Science 2025. https://doi.org/10.1007/s10853-025-10659-2
Rahbari-Sisakht, M.; Ismail, A. F. Covalent organic framework membranes for water purification: Current status and future research directions. Separation and Purification Technology 2025, 359, 130759. https://doi.org/10.1016/j.seppur.2024.130759
Al-Hajri, W.; De Luna, Y.; Bensalah, N. Review on recent applications of Nitrogen‐Doped Carbon materials in CO2 capture and energy conversion and storage. Energy Technology 2022. https://doi.org/10.1002/ente.202200498
Zhang, C.; Wang, G.; Gao, Y.; Ma, H.; Dong, X.; Zhang, X. Surface and pore co-functionalized ceramic membrane with nitrogen doped carbon for enhanced water treatment through coupling peroxymonosulfate activation. Separation and Purification Technology 2022, 292, 120998. https://doi.org/10.1016/j.seppur.2022.120998
Lazar, M. M.; Ghiorghita, C.-A.; Dragan, E. S.; Humelnicu, D.; Dinu, M. V. Ion-Imprinted Polymeric Materials for Selective Adsorption of Heavy Metal Ions from Aqueous Solution. Molecules 2023, 28 (6), 2798. https://doi.org/10.3390/molecules28062798
Luo, Q.; Zeng, M.; Wang, X.; Huang, H.; Wang, X.; Liu, N.; Huang, X. Glycidol-functionalized macroporous polymer for boron removal from aqueous solution. Reactive and Functional Polymers 2020, 150, 104543. https://doi.org/10.1016/j.reactfunctpolym.2020.104543
Zhu, Z.; Ouyang, S.; Li, P.; Shan, L.; Ma, R.; Zhang, P. Persistent organic pollutants removal via hierarchical flower-like layered double hydroxide: Adsorption behaviors and mechanism investigation. Applied Clay Science 2020, 188, 105500. https://doi.org/10.1016/j.clay.2020.105500
Dai, C.; Wu, X.; Wang, Q.; Bai, Y.; Zhao, D.; Fu, J.; Fu, B.; Ding, H. Layered double hydroxides for efficient treatment of heavy metals and organic pollutants: Recent progress and future perspectives. Separation and Purification Technology 2025, 352, 128277. https://doi.org/10.1016/j.seppur.2024.128277
Marghade, D.; Shelare, S.; Prakash, C.; Soudagar, M. E. M.; Yunus Khan, T. M.; Kalam, M. A. Innovations in Metal-Organic Frameworks (MOFs): Pioneering Adsorption Approaches for Persistent Organic Pollutant (POP) Removal. Environmental Research 2024, 119404. https://doi.org/10.1016/j.envres.2024.119404
Naghdi, S.; Shahrestani, M. M.; Zendehbad, M.; Djahaniani, H.; Kazemian, H.; Eder, D. Recent Advances in Application of Metal-Organic Frameworks (MOFs) as Adsorbent and Catalyst in Removal of Persistent Organic Pollutants (POPs). Journal of Hazardous Materials 2022, 130127. https://doi.org/10.1016/j.jhazmat.2022.130127
Nguyen, T.-T.; Min, X.; Xia, W.; Qiang, Z.; Khandge, R. S.; Yu, H.-K.; Wang, J.; Wang, Y.; Ma, X. Anionic covalent organic framework membranes for the removal of per- and polyfluoroalkyl substances with enhanced selectivity. Journal of Membrane Science 2024, 122925. https://doi.org/10.1016/j.memsci.2024.122925
Wang, T.; Ling, C.; Si, Y.; Li, L.; Xing, B. Fabrication of a graphitic N-doped sp/sp carbon interface in carbon-based materials for efficient removal of antibiotics. Chemical Engineering Journal 2025, 513, 162770. https://doi.org/10.1016/j.cej.2025.162770
Wang, X.; Lyu, H.; Hu, Z.; Shen, B. Application of molecular imprinting for targeted removal of organic contaminants and resistance genes from water: A review. Journal of Environmental Chemical Engineering 2024, 12 (2), 112068. https://doi.org/10.1016/j.jece.2024.112068
Qing, W.; Liu, F.; Yao, H.; Sun, S.; Chen, C.; Zhang, W. Functional catalytic membrane development: A review of catalyst coating techniques. Advances in Colloid and Interface Science 2020, 282, 102207. https://doi.org/10.1016/j.cis.2020.102207
Ruan, Y.; Hu, Y.; Cheng, H. Recent Progress in g-C3N4-Based Photocatalysts for Organic Pollutant Degradation: Strategies to Improve Photocatalytic Activity. Catalysts 2025, 15 (2), 148. https://doi.org/10.3390/catal15020148
Zhong, J.; Jiang, H.; Wang, Z.; Yu, Z.; Wang, L.; Mueller, J. F.; Guo, J. Efficient photocatalytic destruction of recalcitrant micropollutants using graphitic carbon nitride under simulated sunlight irradiation. Environmental Science and Ecotechnology 2021, 5, 100079. https://doi.org/10.1016/j.ese.2021.100079
Sun, A.; Kong, C.; Wang, J.; Zhou, B.; Chen, H.; Yuan, R.; Bai, Z. Photoelectrocatalytic Degradation of Rhodamine B in the Presence of TiO2-BiVO4. Materials 2025, 18 (18), 4253. https://doi.org/10.3390/ma18184253
Dontsova, T. A.; Kutuzova, A. S.; Bila, K. O.; Kyrii, S. O.; Kosogina, I. V.; Nechyporuk, D. O. Enhanced Photocatalytic Activity of TiO2/SnO2 Binary Nanocomposites. Journal of Nanomaterials 2020, 1–13. https://doi.org/10.1155/2020/8349480
Wei, X.-X.; Cui, H.; Guo, S.; Zhao, L.; Li, W. Hybrid BiOBr–TiO2 nanocomposites with high visible light photocatalytic activity for water treatment. Journal of Hazardous Materials 2013, 263, 650–658. https://doi.org/10.1016/j.jhazmat.2013.10.027
Xu, R.; Wang, X.; Wu, N.; Liu, Z.; Di, S.; Zhao, H.; Wang, Z.; Gu, C.; Qi, P. Construction of Z-scheme heterojunction BiOBr/TiO2 for highly efficient photodegradation of sodium pentachlorophenate under visible light. SSRN 2025. http://dx.doi.org/10.2139/ssrn.5717607
Nair, K. M.; Kumaravel, V.; Pillai, S. C. Carbonaceous cathode materials for electro-Fenton technology: Mechanism, kinetics, recent advances, opportunities and challenges. Chemosphere 2021, 269, 129325. https://doi.org/10.1016/j.chemosphere.2020.129325
Zhang, D.; Liu, T.; Yin, K.; Liu, C.; Wei, Y. Selective H2O2 production on N-doped porous carbon from direct carbonization of metal organic frameworks for electro-Fenton mineralization of antibiotics. Chemical Engineering Journal 2020, 383, 123184. https://doi.org/10.1016/j.cej.2019.123184
Baray-Calderón, A.; Aleman-Ramirez, J. L.; Díaz-Cruz, E. B.; Martinez-Alonso, C.; Fuentes-Pérez, M.; Olvera-Vargas, H.; Becerra-Paniagua, D. K. Recent Advances in Perovskite-Based Heterojunction Photocatalysts: Synthesis, Properties, and Applications. Korean Journal of Chemical Engineering 2025. https://doi.org/10.1007/s11814-025-00416-1
Li, S.; Wu, H.; Yan, C. Perovskite materials for highly efficient Photo(electro)catalytic water splitting: A mini-review. Nano Materials Science 2024. https://doi.org/10.1016/j.nanoms.2024.05.010
Huang, Z.; Ghasemi, H. Hydrophilic polymer-based anti-biofouling coatings: Preparation, mechanism, and durability. Advances in Colloid and Interface Science 2020, 284, 102264. https://doi.org/10.1016/j.cis.2020.102264
He, M.; Gao, K.; Zhou, L.; Jiao, Z.; Wu, M.; Cao, J.; You, X.; Cai, Z.; Su, Y.; Jiang, Z. Zwitterionic materials for antifouling membrane surface construction. Acta Biomaterialia 2016, 40, 142–152. https://doi.org/10.1016/j.actbio.2016.03.038
Camós Noguer, A.; Olsen, S. M.; Hvilsted, S.; Kiil, S. Long-term stability of PEG-based antifouling surfaces in seawater. Journal of Coatings Technology and Research 2016, 13 (4), 567–575. https://doi.org/10.1007/s11998-016-9801-9
Zheng, L.; Sundaram, H. S.; Wei, Z.; Li, C.; Yuan, Z. Applications of zwitterionic polymers. Reactive and Functional Polymers 2017, 118, 51–61. https://doi.org/10.1016/j.reactfunctpolym.2017.07.006
Yue, W.-W.; Li, H.-J.; Xiang, T.; Qin, H.; Sun, S.-D.; Zhao, C.-S. Grafting of zwitterion from polysulfone membrane via surface-initiated ATRP with enhanced antifouling property and biocompatibility. Journal of Membrane Science 2013, 446, 79–91. https://doi.org/10.1016/j.memsci.2013.06.029
Portela, R., Marinkovic, J. M., Logemann, M., Schörner, M., Zahrtman, N., Eray, E., Haumann, M., García-Suárez, E. J., Wessling, M., Ávila, P., Riisager, A., & Fehrmann, R. Monolithic SiC supports with tailored hierarchical porosity for molecularly selective membranes and supported liquid-phase catalysis. Catalysis Today 2020. https://doi.org/10.1016/j.cattod.2020.06.045
Aziz, S.; Mazhar, A. R.; Ubaid, A.; Shah, S. M. H.; Riaz, Y.; Talha, T.; Jung, D.-W. A comprehensive review of membrane-based water filtration techniques. Applied Water Science 2024, 14 (8). https://doi.org/10.1007/s13201-024-02226-y
Ilyas, A.; Vankelecom, I. F. J. Pilot-Scale Polysulfone Ultrafiltration Patterned Membranes: Phase-Inversion Parametric Optimization on a Roll-to-Roll Casting System. Membranes 2025, 15 (8), 228. https://doi.org/10.3390/membranes15080228
Zhang, J.; Zhao, W.; Shi, C.; Zhao, L.; Chu, Y.; Ren, Y.; Wang, Q.; Chi, Y.; Zhou, S. A Novel PVDF Ultrafiltration Membrane Modified by C60(OH)n-Ag. Polymers 2024, 16 (23), 3359. https://doi.org/10.3390/polym16233359
Musavuli, K. C.; Modisha, P.; Everson, R. C.; Malakhov, A.; Bessarabov, D. Metal Foam as Surface-Extended Catalyst Support Structure for Process Intensification in the Dehydrogenation of Perhydro-Dibenzyltoluene on a Pt/Al2O3 Catalyst. Catalysts 2025, 15 (1), 44. https://doi.org/10.3390/catal15010044
Dai, J.; Zhuang, Y.; Shah, K. J.; Sun, Y. A Review on the Application of Catalytic Membranes Technology in Water Treatment. Catalysts 2025, 15 (11), 1081. https://doi.org/10.3390/catal15111081
Morshed, M. N.; Behary, N.; Bouazizi, N.; Guan, J.; Nierstrasz, V. A. An overview on biocatalysts immobilization on textiles: Preparation, progress and application in wastewater treatment. Chemosphere 2021, 279, 130481. https://doi.org/10.1016/j.chemosphere.2021.130481
Liu, Y.; Yu, S.; Shi, Q.; Ge, X.; Wang, W. Multilayer Coatings for Tribology: A Mini Review. Nanomaterials 2022, 12 (9), 1388. https://doi.org/10.3390/nano12091388
Moore, J. J.; Zhong, D. Advanced Coatings for Structural Materials. Encyclopedia of Materials: Science and Technology; Elsevier, 2003; pp 1–12. https://doi.org/10.1016/b0-08-043152-6/01887-8
Maksakova, O. V.; Lytovchenko, S. V.; Beresnev, V. M.; Klymenko, S. A.; Horokh, D. V.; Mazilin, B. O.; Kopeykina, M. Y.; Klymenko, S. A; Grudnitski, V. V.; Gluhov, O. V.; Galushkov, R. S. A Review of Vacuum-ARC Multilayer Coatings with High-Strength Characteristics and Adhesive Properties. East European Journal of Physics 2024, (4), 11–24. https://doi.org/10.26565/2312-4334-2024-4-01
Viana, R.; Machado, A. R. Influence of adhesion between coating and substrate on the performance of coated HSS twist drills. Journal of the Brazilian Society of Mechanical Sciences and Engineering 2009, 31 (4), 327–332. https://doi.org/10.1590/s1678-58782009000400007
Rosenkranz, A.; Soler, M.; Boidi, G.; Ronai, B.; Varga, M.; Pineda, F.; Righi, M. C. Physical and chemical approaches to tailor 2D coating/substrate adhesion - Experimental and theoretical insights. Advances in Colloid and Interface Science 2025, 103631. https://doi.org/10.1016/j.cis.2025.103631
Lim, T.-T.; Goei, R. Chapter 5. Combined Photocatalysis–Separation Processes for Water Treatment Using Hybrid Photocatalytic Membrane Reactors. Energy and Environment Series; Royal Society of Chemistry: Cambridge, 2016; pp 130–156. https://doi.org/10.1039/9781782627104-00130
Hassnain, M.; Ali, A.; Azhar, M. R.; Abutaleb, A.; Mubashir, M. Challenges and Perspectives on Photocatalytic Membrane Reactors for Volatile Organic Compounds Degradation and Nitrogen Oxides Treatment. Global Challenges 2025. https://doi.org/10.1002/gch2.202500035
Kajau, A.; Motsa, M.; Mamba, B. B.; Mahlangu, O. Leaching of CuO Nanoparticles from PES Ultrafiltration Membranes. ACS Omega 2021, 6 (47), 31797–31809. https://doi.org/10.1021/acsomega.1c04431
Chisăliţă, D.-A.; Boon, J.; Lücking, L. Adsorbent shaping as enabler for intensified pressure swing adsorption (PSA): A critical review. Separation and Purification Technology 2024, 128466. https://doi.org/10.1016/j.seppur.2024.128466
Ersan, G.; Cerrón-Calle, G. A.; Ersan, M. S.; Garcia-Segura, S. Opportunities for in situ electro-regeneration of organic contaminant-laden carbonaceous adsorbents. Water Research 2023, 232, 119718. https://doi.org/10.1016/j.watres.2023.119718
Sabhapathy, P.; Raghunath, P.; Sabbah, A.; Shown, I.; Bayikadi, K. S.; Xie, R.; Krishnamoorthy, V.; Lin, M.; Chen, K.; Chen, L. Axial Chlorine Induced Electron Delocalization in Atomically Dispersed FeN4 Electrocatalyst for Oxygen Reduction Reaction with Improved Hydrogen Peroxide Tolerance. Small 2023. https://doi.org/10.1002/smll.202303598
Chen, Y.; Wang, Q.; Hou, L.; Huang, H.; Gao, Z.; Wei, Y. Self‐Warning and Self‐Repairing Mechanisms in Functional Coatings: A Review. Exploration 2025. https://doi.org/10.1002/exp.20240066
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Tykhovskyi O., Kyrii S.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The ownership of copyright remains with the Authors.
Authors may use their own material in other publications provided that the Journal is acknowledged as the original place of publication and National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” as the Publisher.
Authors are reminded that it is their responsibility to comply with copyright laws. It is essential to ensure that no part of the text or illustrations have appeared or are due to appear in other publications, without prior permission from the copyright holder.
WPT articles are published under Creative Commons licence:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under CC BY-NC 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. The use of the material for commercial purposes is not permitted.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.