ANALYSIS OF CHALLENGES AND PROBLEMS IN THE APPLICATION OF ELECTRODEIONISATION FOR DEMINERALIZED WATER PRODUCTION
DOI:
https://doi.org/10.20535/2218-930012025339353Keywords:
електродеіонізація, електричний опір води, знесолення, іонообмінна мембрана, канал концентрування, модифікування, спейсерAbstract
The article presents an analysis of the challenges and problems that limit the widespread use of the electrodeionization method for water desalination. Nevertheless, this technology has already proven itself in the pharmaceutical industry, in the production of microelectronics and at thermal power facilities. But it also has prospects for wider application, for example, in the chemical and food industries, thermal power engineering, biotechnology, hydrogen production, etc. In combination with preliminary water treatment using the method of double stage reverse osmosis, has the potential to completely replace the use of cation and anion exchange filters for water desalination. The aim of this work is to review and analyze the fundamental principles and practical aspects of the application of electrodeionization, the design and operation of electrodeionization units, and possible approaches to improving their efficiency in order to obtain a high degree of water desalination. To this end, technological approaches to improving the design of electrodeionizers and the possibility of modifying ion-exchange resins in order to reduce energy consumption, increase selectivity and productivity, etc. are considered in detail. The main parameters of the electrodeionization process modes are determined, and the impact of modifying ion-exchange materials with water dissociation catalysts and varying the ratio of cation- and anion-exchange resins on the efficiency of the modules is assessed. The influence of the above factors on productivity, selectivity, energy consumption, continuous operation time of electrodeionization units, degree of ion exchange resin regeneration, degree of water purification, reduction of fouling of ion exchange membranes and degree of electrode corrosion has been analyzed.
References
Aicha, L.; Kamel-Eddine, B. Performance assessment of electrodeionization cell with different inter-membrane spacing and operating conditions, Desalination and Water Treatment Volume, 2022, 271, 65-73, https://doi.org/10.5004/dwt.2022.28687
Aiman, E. A. R.; Mutaz, S.; Marwa, S.; Ala’a, A. M. Reduction of chlorine corrosion in ultra-pure water production system including an electrodeionization unit, 2011, https://journal.uctm.edu/node/j2011-2/10_Yordania_165-174.pdf
Al-Rawajfeh, A. E. Enhancement of hardness and chloride removal and reduction of Cl2 release and corrosion in electrodeionization units, J. Water Process Eng., 2014, http://dx.doi.org/10.1016/j.jwpe.2014.06.010
Alvarado, L.; Ramírez, A.; Rodríguez-Torres, I. Cr(VI) removal by continuous electrodeionization: Study of its basic technologies, 2009, http://dx.doi.org/10.1016/j.desal.2009.06.051
Anil, V. P.; Li, L.; Joe, G. Advances in cedi module construction and performance, 2002, https://www.yumpu.com/en/document/view/40353025/advances-in-cedi-module-construction-and-performance-siemens
Araslou, M. J.; Jafarian, А.; Seyed, Н. А.; Shirazi, М.; Khezri, S. M. Development of an electrodeionization and electrodialysis process for the removal of nitrate from drinking water, International journal of Environmental Science and Technology, 2023, 21(3), https://DOI:10.1007/s13762-023-05383-w
Brian, P.; Hernon, R.; Hilda, Z.; Li, Z; Keith, J.; Siwak, S. R. Electrodeionization in Power Plant Applications, 2005, https://www.academia.edu/11348660/Electrodeionization_in_Power_Plant_Applications
Cho, M.; Han, S.; Lee, S.; Kim, J.B.; Kim, B. Enhanced Salt Removal of Fresh Water by Recovery Reduced Ion Concentration Polarization Desalination. Membranes, 2024, 14, 56, https://doi.org/10.3390/membranes14030056
Dexiang, L.; Yi, L.; Wu, F.; Chen, L.; Su, P.; Feng, D. Characteristics of nutrient element migration in electrodeionization process, Chemical Engineering Science, Volume, 2024, 286, 119640, https://doi.org/10.1016/j.ces.2023.119640
Dzyazko, Y.; Atamanyuk, V. Electrodeionization method and its application for purification of natural and waste water from heavy metal ions, 2004, https://ekmair.ukma.edu.ua/server/api/core/bitstreams/7894a973-6d26-46b3-9d0f- f1ed6ff3076b/content
Fasuyi, A. Investigative study of poly(ionic) liquid incorporation in resin wafer electrodeionization for improved specific energy consumption, Electronic Theses and Dissertations, 2019, https://egrove.olemiss.edu/etd/1750
Fasuyi, A.; Lopez, A. M. Influence of poly(ionic) liquid incorporation within resin wafer electrodeionization for reduced energy consumption in brackish water desalination, Chemical Engineering Journal, Volume, 2023, 454, Part 2, 140209, https://doi.org/10.1016/j.cej.2022.140209
Fengting, Q.; Jiaqi, L.; Dungang, G.; Guanghui, L.; Yang, L.; Pinhua, R.; Shunong, F.; Nan, Z. Modelling and optimisation of electrodeionization process for the energy-saving of ultrapure water production, Journal of Cleaner Production, Volume 372, 2022, 133754, https://doi.org/10.1016/j.jclepro.2022.133754
Gede, W. I.; Khoiruddin, F. A. Bench scale electrodeionization for high pressure boiler feed water, 2013, http://dx.doi.org/10.1016/j.desal.2013.01.008
Goncagül, Е.; Direncan, E.; Özgür, A. Feasibility of electrodeionization for phosphate removal, 2023, https://doi.org/10.1002/wer.10950
Guangming, Z; Jie, Y.; Ming, Y. Application of Electrodeionization Process for Bioproduct Recovery and CO2 Capture and Storage, 2016, https://doi.org/10.2174/1385272820666160513153326
Gülseren, D; Ayşe, N. M.; Özgür, A. Utilization of Electrodeionization for Lithium Removal, ACS Omega, 2023, 8, 17583−17590, https://doi.org/10.1021/acsomega.2c08095
Gülsev, S.; İdil, Y. İ.; Müşerref, A.; Özgür, A. Polymer-enhanced ultrafiltration–electrodeionization hybrid system for the removal of boron, Environmental Science: Water Research & Technology, 2023, https://doi.org/10.1039/D3EW00041A
Hegazy, R.; Muhammad, W. S.; Mohammad A. А.; Mujahed A. D. Radial Movement Optimization Based Optimal Operating Parameters of a Capacitive Deionization, Desalination System, 2020, 8, 964, https://doi:10.3390/pr8080964
Helen, J.; Khoiruddin, K.; Nia, J.; Vinka, E.; Pineapple juice acidity removal using electrodeionization (EDI), Journal of Food Engineering, 2021, 304(5):110595, https://DOI:10.1016/j.jfoodeng.2021.110595
Honarparvar, S.; Zhang, X.; Chen, T.; Alborzi, A.; Afroz, K.; Reible, D. Frontiers of Membrane Desalination Processes for Brackish Water Treatment: A Review. Membranes, 2021, 11, 246. https://doi.org/10.3390/membranes11040246
Ji-Hyeon, L.; Hyeon-Bee, S.; Moon-Sung K. Ion-Exchange Resin Bed Configuration and Membrane Characteristics for Improving Continuous Electrodeionization (CEDI) Performance, Membrane Journal, 2025, 35(3):265-275, https://DOI:10.14579/MEMBRANE_JOURNAL.2025.35.3.265
Ji-Min, L.; Moon-Sung, K. Heterogeneous Anion-Exchange Membranes with Enhanced Ion Conductivity for Continuous Electrodeionization. 2023, https://doi.org/10.3390/membranes13120888
Jitendra, T.; Wayne, M. C. Resin Wafer-Electrodeionization for Flue Gas Carbon Dioxide Capture, 2010, http://www.mcilvainecompany.com/decision_tree/subscriber/articles/resin_wafer_doe.pdf
Jordan, M. L.; Valentino, L.; Nazyrynbekova, N.; Palakkal, V. M.; Kole, S.; Bhattacharya, D.; Lin, Y. J.; Arges, C. Promoting water-splitting in Janus bipolar ion-exchange resin wafers for electrodeionization, Mol. Syst. Des. Eng., 2020, http://dx.doi.org/10.1039/C9ME00179D
Jun, L.; Yu-Xin, W.; Yao-Yao, L.; Guang-Le, W.; Long, K.; Jia, Z. Numerical simulation of the electrodeionization (EDI) process for producing ultrapure water, 2010, https://doi.org/10.1016/j.electacta.2010.07.054
Khoiruddin, I. N.; Widiasa, I. G.; Removal of inorganic contaminants in sugar refining process using electrodeionization, Journal of Food Engineering, Volume 133, 2014, 40-45, https://doi.org/10.1016/j.jfoodeng.2014.02.015
Khoiruddin, K.; Ahmad, N. H.; Mohammad A. A.; Martin, Z.; Bazant, I. G. Development and long- term field test of electrodeionization for decentralised desalination facility, Chemical Engineering and Processing - Process Intensification, Volume 192, 2023, 109502, https://doi.org/10.1016/j.cep.2023.109502
Kumar P. S.; Rathi B. S. Configuration and mechanism of electrodeionization module, 2024, https://DOI:10.1016/B978-0-443-18983-8.00003-X
Kumar P. S.; Rathi B. S. Continuous electrodeionization on the removal of toxic pollutant from aqueous solution, 2022, Chemosphere, p. 132808, https://DOI:10.1016/j.chemosphere.2021.132808
Kumar P. S.; Rathi B. S. Electrodeionization theory, mechanism and environmental applications. A review, Environmental Chemistry Letters, 2020, 18(1–3), https://DOI:10.1007/s10311-020-01006-9
Kumar P. S.; Rathi B. S. A review on recent advances in electrodeionization for various environmental applications, Chemosphere, 2021, 289(4):133223, https://DOI:10.1016/j.chemosphere.2021.133223
Mitchenko, T. E.; Kosogina, I. V. The latest water treatment technologies: recommendations for completing homework assignments, teaching aid, 2023, https://ela.kpi.ua/server/api/core/bitstreams/2f044758-3f83-4fd6-8093- 01984be1f836/content
Nima, M.; Farzad, B. M. Evaluation of salt water desalination methods [Review], 2023, https://www.researchgate.net/publication/378139928_Evaluation_of_salt_water_desalination_methods_Review
Paolo, Y.; Hanna, E. N.; Rima, K.; Agapy, M.; Bilal, E. K.; Diala, К.; Zeinab, M.; Ayman, C. Recent Advances in Applied Electrochemistry: A Review, Chemistry, 2024, 6, 407–434. https://doi.org/10.3390/chemistry6030024
Po-Chih, T.; Zhan-Zhao, L.; Tse-Lun, C.; Yupo, L.; Pen-Chi, C. Performance evaluation of resin wafer electrodeionization for cooling tower blowdown water reclamation, 2022, https://doi.org/10.1186/s42834-022- 00145-8
Rukowicz, В. Electrodeionization for the Bio-Succinic Acid Production Process, ACS Sustainable Chemistry & Engineering, 2023, 11(31):11459-11469, https://DOI:10.1021/acssuschemeng.3c01285
Saravanan, А.; Yaashikaa, P. R.; Kumar, P. S.; Karishma S.; Thamarai, P.; Deivayanai, V.C.; Rangasamy, G., Selvasembian, R.; Tejraj, M. А. Environmental sustainability of toxic arsenic ions removal from wastewater using electrodeionization, Separation and Purification Technology, Volume, 2023, 317, 123897, https://doi.org/10.1016/j.seppur.2023.123897
Senthil, Kumar, P.; Senthil, Rathi, B. Electrodeionization. Fundamentals, methods and applications, Electronic book, ISBN-13978-0443189845, 2024, 272, https://books.google.com.ua/books/about/Electrodeionization.html?id=tR_NEAAAQBAJ&redir_esc=y
Senthil, Rathi, B.; Senthil, Kumar, P. Electrodeionization theory, mechanism and environmental applications. A review, 2020, https://doi.org/10.1007/s10311-020-01006-9
Senthilkumar, S.; Jayamoorthy, K. Sustainable desalination through electrodeionization: innovations and focus on efficient carbonate ion removal – a comprehensive review, 2024, Environmental Technology Reviews, Volume 13, (Issue 1):699-721, https://DOI:10.1080/21622515.2024.2417852
Shu-Yuan, P.; Seth, W. S.; Hwong-Wen, M.; Yupo, J. L.; Pen-Chi, C. Energy-efficient resin wafer electrodeionization for impaired water reclamation, 2018, https://doi.org/10.1016/j.jclepro.2017.11.068
Son, M.; Vineeth, Y.; Wulin, V.; Johannes, S.; Gorski, C. A.; Logan, B. E. Improving the Thermodynamic Energy Efficiency of Battery Electrode Deionization Using Flow-Through Electrodes, Environ. Sci. Technol., 2020, https://DOI:10.1021/acs.est.9b06843
Subramanian, A.; Shireesha, M.; Padakanti, S.; Sarath, Р.; Aradhyula, J.; Bhanu, S.; Sesha, V.; Sai, K. Experimental analysis of electrodeionization a D.O.E approach, 2022, https://doi.org/10.5281/zenodo.7014928
Sumit, D., B.; Kumar, M. Enhancing understandability and performance of flow electrode capacitive deionisation by optimizing configurational and operational parameters: A review on recent progress, Separation and Purification Technology, 2020, https://doi.org/10.1016/j.seppur.2020.116660
The quality of water for pharmaceutical production, 42-3.7:2013, https://www.dls.gov.ua/wp-content/uploads/2019/02/%D0%9D%D0%B0%D1%81%D1%82%D0%B0%D0%BD%D0%BE%D0%B2%D0%B0-%D0%9B%D0%97-%D0%AF%D0%BA%D1%96%D1%81%D1%82%D1%8C-%D0%B2%D0%BE%D0%B4%D0%B8.pdf
Tse-Lun, C.; Po-Chih, T.; Li-Heng, C.; Yupo J. L.; Seth W.; Snyder, Z. Z.; Hwong-Wen, M. Circular Transition of Cooling Tower Blowdown Using Resin Wafer Electrodeionization (RW-EDI) Technology: Transforming Water−Energy System Hotspots, ACS EST Water, 2025, 5, 3719−3728, https://doi.org/10.1021/acsestwater.4c01279
Ulusoy, E. H. B.; Hestekin, C. N.; Hestekin, J. A. Effects of Resin Chemistries on the Selective Removal of Industrially Relevant Metal Ions Using Wafer-Enhanced Electrodeionization. Membranes 2021, 11, 45. https://doi.org/10.3390/membranes11010045
Varada, M. P., Lauren, V.; Qi, L.; Subarna, K.; Yupo, J.; Linand, C.; Arges. G. Advancing electrodeionization with conductive ionomer binders that immobilise ion-exchange resin particles into porous wafer substrates, 2020, https://doi.org/10.1038/s41545-020-0052-z
VGB standard, feed water, boiler water and steam quality for power plants/industrial plants, Vgb-S-010-T-00-2011-12, 2011, https://www.vgb.org/index.php?site=vgbmultimedia&id=6432
Xu, C.; Lida, W.; Zhuang, W.; Wen, S.; Zhengqing, У.; Jingjing, J.; Guichang, L. An innovative compound bed of EDI device with enhancing ion-exchange resins regeneration efficiency, 2021, https://doi.org/10.2166/wst.2021.161
Yang, Z.; Ruoling, G.; He, Х.; Xiaofeng, L.; Jun, C.; Ruyi, H.; Xiaowei, S.; Zichun, Y. Research advances and future perspectives of electrodeionization technology, 2025, https://doi.org/10.1016/j.wroa.2025.100393
Ying, L.; Jianyou, W.; Yong, X.; Bin, W. A deep desalination and anti-scaling electrodeionization (EDI) process for high purity water preparation, 2019, https://doi.org/10.1016/j.desal.2019.114075
Yiqing, L.; Shan, G.; Enqi, T. Polytechnic University, Development of a Spacer for the Diluting Compartment of EDI-LB (Electrodeionization- Layered- -Bed) Device, School of Environmental and Chemical Engineering, 2010, http://dx.doi:10.5539/jsd.v3n1p202
Yong, X.; Yeyin, L.; Qingbai, C.; Yang, G.; Bingbing, H.; Jianyou, W. Convenient-style electrodeionization system with novel configuration and inflow mode for small-scale high purity water preparation, Desalination, Volume 594, 2025, 118302, https://doi.org/10.1016/j.desal.2024.118302
Yuan, Y.; Qian, F.; Lu, J.; Gu, D.; Lou, Y.; Xue, N.; Li, G.; Liao, W.; Zhang, N. Design Optimization and Carbon Footprint Analysis of an Electrodeionization System with Flexible Load Regulation. Sustainability, 2022, 14, 15957, https://doi.org/10.3390/su142315957
Zaheen, U. K.; Maku, M.; Shestakova, M.; Ahmed, A. О.; Sillanpää, М.; Zhengshuo, Z.; Bingnan, S.; Yang, L. Electro-deionisation (EDI) technology for enhanced water treatment and desalination: A review, Desalination, Volume 548, 2023, 116254, https://doi.org/10.1016/j.desal.2022.116254
Zhang, У.; Guan, R.; Xie, Н.; Li, Х. Research Advances and Future Perspectives of Electrodeionization Technology, Water Research X, 2025, 28 100393, https://doi.org/10.1016/j.wroa.2025.100393
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Simdianov D. S., Yanushevska O. I., Dontsova T. A.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The ownership of copyright remains with the Authors.
Authors may use their own material in other publications provided that the Journal is acknowledged as the original place of publication and National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” as the Publisher.
Authors are reminded that it is their responsibility to comply with copyright laws. It is essential to ensure that no part of the text or illustrations have appeared or are due to appear in other publications, without prior permission from the copyright holder.
WPT articles are published under Creative Commons licence:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under CC BY-NC 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. The use of the material for commercial purposes is not permitted.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.