ANALYSIS OF CHALLENGES AND PROBLEMS IN THE APPLICATION OF ELECTRODEIONISATION FOR DEMINERALIZED WATER PRODUCTION

Authors

DOI:

https://doi.org/10.20535/2218-930012025339353

Keywords:

електродеіонізація, електричний опір води, знесолення, іонообмінна мембрана, канал концентрування, модифікування, спейсер

Abstract

The article presents an analysis of the challenges and problems that limit the widespread use of the electrodeionization method for water desalination. Nevertheless, this technology has already proven itself in the pharmaceutical industry, in the production of microelectronics and at thermal power facilities. But it also has prospects for wider application, for example, in the chemical and food industries, thermal power engineering, biotechnology, hydrogen production, etc. In combination with preliminary water treatment using the method of double stage reverse osmosis, has the potential to completely replace the use of cation and anion exchange filters for water desalination. The aim of this work is to review and analyze the fundamental principles and practical aspects of the application of electrodeionization, the design and operation of electrodeionization units, and possible approaches to improving their efficiency in order to obtain a high degree of water desalination. To this end, technological approaches to improving the design of electrodeionizers and the possibility of modifying ion-exchange resins in order to reduce energy consumption, increase selectivity and productivity, etc. are considered in detail. The main parameters of the electrodeionization process modes are determined, and the impact of modifying ion-exchange materials with water dissociation catalysts and varying the ratio of cation- and anion-exchange resins on the efficiency of the modules is assessed. The influence of the above factors on productivity, selectivity, energy consumption, continuous operation time of electrodeionization units, degree of ion exchange resin regeneration, degree of water purification, reduction of fouling of ion exchange membranes and degree of electrode corrosion has been analyzed.

References

Aicha, L.; Kamel-Eddine, B. Performance assessment of electrodeionization cell with different inter-membrane spacing and operating conditions, Desalination and Water Treatment Volume, 2022, 271, 65-73, https://doi.org/10.5004/dwt.2022.28687

Aiman, E. A. R.; Mutaz, S.; Marwa, S.; Ala’a, A. M. Reduction of chlorine corrosion in ultra-pure water production system including an electrodeionization unit, 2011, https://journal.uctm.edu/node/j2011-2/10_Yordania_165-174.pdf

Al-Rawajfeh, A. E. Enhancement of hardness and chloride removal and reduction of Cl2 release and corrosion in electrodeionization units, J. Water Process Eng., 2014, http://dx.doi.org/10.1016/j.jwpe.2014.06.010

Alvarado, L.; Ramírez, A.; Rodríguez-Torres, I. Cr(VI) removal by continuous electrodeionization: Study of its basic technologies, 2009, http://dx.doi.org/10.1016/j.desal.2009.06.051

Anil, V. P.; Li, L.; Joe, G. Advances in cedi module construction and performance, 2002, https://www.yumpu.com/en/document/view/40353025/advances-in-cedi-module-construction-and-performance-siemens

Araslou, M. J.; Jafarian, А.; Seyed, Н. А.; Shirazi, М.; Khezri, S. M. Development of an electrodeionization and electrodialysis process for the removal of nitrate from drinking water, International journal of Environmental Science and Technology, 2023, 21(3), https://DOI:10.1007/s13762-023-05383-w

Brian, P.; Hernon, R.; Hilda, Z.; Li, Z; Keith, J.; Siwak, S. R. Electrodeionization in Power Plant Applications, 2005, https://www.academia.edu/11348660/Electrodeionization_in_Power_Plant_Applications

Cho, M.; Han, S.; Lee, S.; Kim, J.B.; Kim, B. Enhanced Salt Removal of Fresh Water by Recovery Reduced Ion Concentration Polarization Desalination. Membranes, 2024, 14, 56, https://doi.org/10.3390/membranes14030056

Dexiang, L.; Yi, L.; Wu, F.; Chen, L.; Su, P.; Feng, D. Characteristics of nutrient element migration in electrodeionization process, Chemical Engineering Science, Volume, 2024, 286, 119640, https://doi.org/10.1016/j.ces.2023.119640

Dzyazko, Y.; Atamanyuk, V. Electrodeionization method and its application for purification of natural and waste water from heavy metal ions, 2004, https://ekmair.ukma.edu.ua/server/api/core/bitstreams/7894a973-6d26-46b3-9d0f- f1ed6ff3076b/content

Fasuyi, A. Investigative study of poly(ionic) liquid incorporation in resin wafer electrodeionization for improved specific energy consumption, Electronic Theses and Dissertations, 2019, https://egrove.olemiss.edu/etd/1750

Fasuyi, A.; Lopez, A. M. Influence of poly(ionic) liquid incorporation within resin wafer electrodeionization for reduced energy consumption in brackish water desalination, Chemical Engineering Journal, Volume, 2023, 454, Part 2, 140209, https://doi.org/10.1016/j.cej.2022.140209

Fengting, Q.; Jiaqi, L.; Dungang, G.; Guanghui, L.; Yang, L.; Pinhua, R.; Shunong, F.; Nan, Z. Modelling and optimisation of electrodeionization process for the energy-saving of ultrapure water production, Journal of Cleaner Production, Volume 372, 2022, 133754, https://doi.org/10.1016/j.jclepro.2022.133754

Gede, W. I.; Khoiruddin, F. A. Bench scale electrodeionization for high pressure boiler feed water, 2013, http://dx.doi.org/10.1016/j.desal.2013.01.008

Goncagül, Е.; Direncan, E.; Özgür, A. Feasibility of electrodeionization for phosphate removal, 2023, https://doi.org/10.1002/wer.10950

Guangming, Z; Jie, Y.; Ming, Y. Application of Electrodeionization Process for Bioproduct Recovery and CO2 Capture and Storage, 2016, https://doi.org/10.2174/1385272820666160513153326

Gülseren, D; Ayşe, N. M.; Özgür, A. Utilization of Electrodeionization for Lithium Removal, ACS Omega, 2023, 8, 17583−17590, https://doi.org/10.1021/acsomega.2c08095

Gülsev, S.; İdil, Y. İ.; Müşerref, A.; Özgür, A. Polymer-enhanced ultrafiltration–electrodeionization hybrid system for the removal of boron, Environmental Science: Water Research & Technology, 2023, https://doi.org/10.1039/D3EW00041A

Hegazy, R.; Muhammad, W. S.; Mohammad A. А.; Mujahed A. D. Radial Movement Optimization Based Optimal Operating Parameters of a Capacitive Deionization, Desalination System, 2020, 8, 964, https://doi:10.3390/pr8080964

Helen, J.; Khoiruddin, K.; Nia, J.; Vinka, E.; Pineapple juice acidity removal using electrodeionization (EDI), Journal of Food Engineering, 2021, 304(5):110595, https://DOI:10.1016/j.jfoodeng.2021.110595

Honarparvar, S.; Zhang, X.; Chen, T.; Alborzi, A.; Afroz, K.; Reible, D. Frontiers of Membrane Desalination Processes for Brackish Water Treatment: A Review. Membranes, 2021, 11, 246. https://doi.org/10.3390/membranes11040246

Ji-Hyeon, L.; Hyeon-Bee, S.; Moon-Sung K. Ion-Exchange Resin Bed Configuration and Membrane Characteristics for Improving Continuous Electrodeionization (CEDI) Performance, Membrane Journal, 2025, 35(3):265-275, https://DOI:10.14579/MEMBRANE_JOURNAL.2025.35.3.265

Ji-Min, L.; Moon-Sung, K. Heterogeneous Anion-Exchange Membranes with Enhanced Ion Conductivity for Continuous Electrodeionization. 2023, https://doi.org/10.3390/membranes13120888

Jitendra, T.; Wayne, M. C. Resin Wafer-Electrodeionization for Flue Gas Carbon Dioxide Capture, 2010, http://www.mcilvainecompany.com/decision_tree/subscriber/articles/resin_wafer_doe.pdf

Jordan, M. L.; Valentino, L.; Nazyrynbekova, N.; Palakkal, V. M.; Kole, S.; Bhattacharya, D.; Lin, Y. J.; Arges, C. Promoting water-splitting in Janus bipolar ion-exchange resin wafers for electrodeionization, Mol. Syst. Des. Eng., 2020, http://dx.doi.org/10.1039/C9ME00179D

Jun, L.; Yu-Xin, W.; Yao-Yao, L.; Guang-Le, W.; Long, K.; Jia, Z. Numerical simulation of the electrodeionization (EDI) process for producing ultrapure water, 2010, https://doi.org/10.1016/j.electacta.2010.07.054

Khoiruddin, I. N.; Widiasa, I. G.; Removal of inorganic contaminants in sugar refining process using electrodeionization, Journal of Food Engineering, Volume 133, 2014, 40-45, https://doi.org/10.1016/j.jfoodeng.2014.02.015

Khoiruddin, K.; Ahmad, N. H.; Mohammad A. A.; Martin, Z.; Bazant, I. G. Development and long- term field test of electrodeionization for decentralised desalination facility, Chemical Engineering and Processing - Process Intensification, Volume 192, 2023, 109502, https://doi.org/10.1016/j.cep.2023.109502

Kumar P. S.; Rathi B. S. Configuration and mechanism of electrodeionization module, 2024, https://DOI:10.1016/B978-0-443-18983-8.00003-X

Kumar P. S.; Rathi B. S. Continuous electrodeionization on the removal of toxic pollutant from aqueous solution, 2022, Chemosphere, p. 132808, https://DOI:10.1016/j.chemosphere.2021.132808

Kumar P. S.; Rathi B. S. Electrodeionization theory, mechanism and environmental applications. A review, Environmental Chemistry Letters, 2020, 18(1–3), https://DOI:10.1007/s10311-020-01006-9

Kumar P. S.; Rathi B. S. A review on recent advances in electrodeionization for various environmental applications, Chemosphere, 2021, 289(4):133223, https://DOI:10.1016/j.chemosphere.2021.133223

Mitchenko, T. E.; Kosogina, I. V. The latest water treatment technologies: recommendations for completing homework assignments, teaching aid, 2023, https://ela.kpi.ua/server/api/core/bitstreams/2f044758-3f83-4fd6-8093- 01984be1f836/content

Nima, M.; Farzad, B. M. Evaluation of salt water desalination methods [Review], 2023, https://www.researchgate.net/publication/378139928_Evaluation_of_salt_water_desalination_methods_Review

Paolo, Y.; Hanna, E. N.; Rima, K.; Agapy, M.; Bilal, E. K.; Diala, К.; Zeinab, M.; Ayman, C. Recent Advances in Applied Electrochemistry: A Review, Chemistry, 2024, 6, 407–434. https://doi.org/10.3390/chemistry6030024

Po-Chih, T.; Zhan-Zhao, L.; Tse-Lun, C.; Yupo, L.; Pen-Chi, C. Performance evaluation of resin wafer electrodeionization for cooling tower blowdown water reclamation, 2022, https://doi.org/10.1186/s42834-022- 00145-8

Rukowicz, В. Electrodeionization for the Bio-Succinic Acid Production Process, ACS Sustainable Chemistry & Engineering, 2023, 11(31):11459-11469, https://DOI:10.1021/acssuschemeng.3c01285

Saravanan, А.; Yaashikaa, P. R.; Kumar, P. S.; Karishma S.; Thamarai, P.; Deivayanai, V.C.; Rangasamy, G., Selvasembian, R.; Tejraj, M. А. Environmental sustainability of toxic arsenic ions removal from wastewater using electrodeionization, Separation and Purification Technology, Volume, 2023, 317, 123897, https://doi.org/10.1016/j.seppur.2023.123897

Senthil, Kumar, P.; Senthil, Rathi, B. Electrodeionization. Fundamentals, methods and applications, Electronic book, ISBN-13978-0443189845, 2024, 272, https://books.google.com.ua/books/about/Electrodeionization.html?id=tR_NEAAAQBAJ&redir_esc=y

Senthil, Rathi, B.; Senthil, Kumar, P. Electrodeionization theory, mechanism and environmental applications. A review, 2020, https://doi.org/10.1007/s10311-020-01006-9

Senthilkumar, S.; Jayamoorthy, K. Sustainable desalination through electrodeionization: innovations and focus on efficient carbonate ion removal – a comprehensive review, 2024, Environmental Technology Reviews, Volume 13, (Issue 1):699-721, https://DOI:10.1080/21622515.2024.2417852

Shu-Yuan, P.; Seth, W. S.; Hwong-Wen, M.; Yupo, J. L.; Pen-Chi, C. Energy-efficient resin wafer electrodeionization for impaired water reclamation, 2018, https://doi.org/10.1016/j.jclepro.2017.11.068

Son, M.; Vineeth, Y.; Wulin, V.; Johannes, S.; Gorski, C. A.; Logan, B. E. Improving the Thermodynamic Energy Efficiency of Battery Electrode Deionization Using Flow-Through Electrodes, Environ. Sci. Technol., 2020, https://DOI:10.1021/acs.est.9b06843

Subramanian, A.; Shireesha, M.; Padakanti, S.; Sarath, Р.; Aradhyula, J.; Bhanu, S.; Sesha, V.; Sai, K. Experimental analysis of electrodeionization a D.O.E approach, 2022, https://doi.org/10.5281/zenodo.7014928

Sumit, D., B.; Kumar, M. Enhancing understandability and performance of flow electrode capacitive deionisation by optimizing configurational and operational parameters: A review on recent progress, Separation and Purification Technology, 2020, https://doi.org/10.1016/j.seppur.2020.116660

The quality of water for pharmaceutical production, 42-3.7:2013, https://www.dls.gov.ua/wp-content/uploads/2019/02/%D0%9D%D0%B0%D1%81%D1%82%D0%B0%D0%BD%D0%BE%D0%B2%D0%B0-%D0%9B%D0%97-%D0%AF%D0%BA%D1%96%D1%81%D1%82%D1%8C-%D0%B2%D0%BE%D0%B4%D0%B8.pdf

Tse-Lun, C.; Po-Chih, T.; Li-Heng, C.; Yupo J. L.; Seth W.; Snyder, Z. Z.; Hwong-Wen, M. Circular Transition of Cooling Tower Blowdown Using Resin Wafer Electrodeionization (RW-EDI) Technology: Transforming Water−Energy System Hotspots, ACS EST Water, 2025, 5, 3719−3728, https://doi.org/10.1021/acsestwater.4c01279

Ulusoy, E. H. B.; Hestekin, C. N.; Hestekin, J. A. Effects of Resin Chemistries on the Selective Removal of Industrially Relevant Metal Ions Using Wafer-Enhanced Electrodeionization. Membranes 2021, 11, 45. https://doi.org/10.3390/membranes11010045

Varada, M. P., Lauren, V.; Qi, L.; Subarna, K.; Yupo, J.; Linand, C.; Arges. G. Advancing electrodeionization with conductive ionomer binders that immobilise ion-exchange resin particles into porous wafer substrates, 2020, https://doi.org/10.1038/s41545-020-0052-z

VGB standard, feed water, boiler water and steam quality for power plants/industrial plants, Vgb-S-010-T-00-2011-12, 2011, https://www.vgb.org/index.php?site=vgbmultimedia&id=6432

Xu, C.; Lida, W.; Zhuang, W.; Wen, S.; Zhengqing, У.; Jingjing, J.; Guichang, L. An innovative compound bed of EDI device with enhancing ion-exchange resins regeneration efficiency, 2021, https://doi.org/10.2166/wst.2021.161

Yang, Z.; Ruoling, G.; He, Х.; Xiaofeng, L.; Jun, C.; Ruyi, H.; Xiaowei, S.; Zichun, Y. Research advances and future perspectives of electrodeionization technology, 2025, https://doi.org/10.1016/j.wroa.2025.100393

Ying, L.; Jianyou, W.; Yong, X.; Bin, W. A deep desalination and anti-scaling electrodeionization (EDI) process for high purity water preparation, 2019, https://doi.org/10.1016/j.desal.2019.114075

Yiqing, L.; Shan, G.; Enqi, T. Polytechnic University, Development of a Spacer for the Diluting Compartment of EDI-LB (Electrodeionization- Layered- -Bed) Device, School of Environmental and Chemical Engineering, 2010, http://dx.doi:10.5539/jsd.v3n1p202

Yong, X.; Yeyin, L.; Qingbai, C.; Yang, G.; Bingbing, H.; Jianyou, W. Convenient-style electrodeionization system with novel configuration and inflow mode for small-scale high purity water preparation, Desalination, Volume 594, 2025, 118302, https://doi.org/10.1016/j.desal.2024.118302

Yuan, Y.; Qian, F.; Lu, J.; Gu, D.; Lou, Y.; Xue, N.; Li, G.; Liao, W.; Zhang, N. Design Optimization and Carbon Footprint Analysis of an Electrodeionization System with Flexible Load Regulation. Sustainability, 2022, 14, 15957, https://doi.org/10.3390/su142315957

Zaheen, U. K.; Maku, M.; Shestakova, M.; Ahmed, A. О.; Sillanpää, М.; Zhengshuo, Z.; Bingnan, S.; Yang, L. Electro-deionisation (EDI) technology for enhanced water treatment and desalination: A review, Desalination, Volume 548, 2023, 116254, https://doi.org/10.1016/j.desal.2022.116254

Zhang, У.; Guan, R.; Xie, Н.; Li, Х. Research Advances and Future Perspectives of Electrodeionization Technology, Water Research X, 2025, 28 100393, https://doi.org/10.1016/j.wroa.2025.100393

Downloads

Published

2025-09-10

How to Cite

Simdianov, D., Yanushevska, O., & Dontsova, T. (2025). ANALYSIS OF CHALLENGES AND PROBLEMS IN THE APPLICATION OF ELECTRODEIONISATION FOR DEMINERALIZED WATER PRODUCTION . WATER AND WATER PURIFICATION TECHNOLOGIES. SCIENTIFIC AND TECHNICAL NEWS, 41(1), 8–31. https://doi.org/10.20535/2218-930012025339353

Issue

Section

INDUSTRIAL WATER TREATMENT