PFAS IN DRINKING WATER: RISK FACTOR FOR HUMAN LIFE, MODERN SOURCES OF POLLUTION, METHODS OF CONTROL AND APPROACHES TO WATER PURIFICATION (REVIEW)
DOI:
https://doi.org/10.20535/2218-930022025339259Keywords:
membrane filtration, methods of determination, micropollutants, polyfluoroalkyl substances (PFAS), toxicity, water purificationAbstract
The current state of aquatic micropollutant contamination is reviewed using polyfluoroalkyl substances (PFAS), which are widely used in industry and are components of consumer products such as cosmetics, fire-fighting foams, household goods, clothing, pesticides, and food packaging. Due to their widespread use and persistence in the environment, PFAS have been detected in rivers and coastal zones, bottom sediments, soils, landfill leachates, and groundwater. It has been found that, due to their heat-resistant properties, PFAS are used as binders in polymer explosives and in various ammunition components. Toxic contamination from ammunition over time may pose a greater danger to the population than the acute detonation of ammunition. Types of per- and polyfluorinated alkyl substances are reviewed. It was found that the most common forms are long-chain perfluorinated PFAS substances, which exhibit carcinogenic, reproductive and immunotoxic properties, are bioaccumulative and can cause liver and kidney toxicity, reproductive and developmental toxicity, endocrine disruption, obesity, type 2 diabetes and various types of cancer. The main methods for the determination of trace amounts of per- and polyfluorinated alkyl compounds are described, including gas or liquid chromatography, tandem mass spectrometry, which are expensive and require complex sample preparation. Currently, solid-phase extraction is preferred for the concentration of micropollutants, which allows expanding the limits of their detection when using gas chromatography and mass spectrometry. A package of tandem chromatography-mass spectrometry methods is recommended for the analysis of PFAS in drinking water. Control methods and approaches to the purification of drinking water sources are reviewed. Electrochemical, sonochemical, advanced oxidation methods, as well as new hybrid methods including the use of nanoadsorbents of natural origin are effective for the removal of short-chain PFAS in laboratory conditions, but have limitations in field application. One of the promising methods for water purification in field conditions is photocatalysis in combination with membrane filtration or electrochemical oxidation.
References
Abunada, Z.; Alazaiza, M. Y.; Bashir, M. J. An overview of per- and polyfluoroalkyl substances (PFAS) in the environment: Source, fate, risk and regulations. Water, 2020, 12(12), 3590. https://doi.org/10.3390/w12123590
Adewuyi, A.; Li, Q. Per- and Polyfluoroalkyl Substances Contamination of Drinking Water Sources in Africa: Pollution Sources and Possible Treatment Methods. Chemosphere 2024, 365, 143368. https://doi.org/10.1016/j.chemosphere.2024.143368
Averina, M.; Brox, J.; Huber, S.; Furberg, A.-S. Exposure to perfluoroalkyl substances (PFAS) and dyslipidemia, hypertension and obesity in adolescents. the FIT futures study. Environ. Res., 2021, 195, 110740. https://doi.org/10.1016/j.envres.2021.110740
Bach, C.; Dauchy, X.; Boiteux, V.; Colin, A.; Hemard, J.; Sagres, V.; Rosin, C.; Munoz, J.-F. The Impact of Two Fluoropolymer Manufacturing Facilities on Downstream Contamination of a River and Drinking Water Resources with Per- and Polyfluoroalkyl Substances. Environ. Sci. Pollut. Res. 2017, 24 (5), 4916–4925. https://doi.org/10.1007/s11356-016-8243-3
Bangma, J.; Eaves, L. A.; Oldenburg, K.; Reiner, J. L.; Manuck, T.; Fry, R. C. Identifying Risk Factors for Levels of Per- and Polyfluoroalkyl Substances (PFAS) in the Placenta in a High-Risk Pregnancy Cohort in North Carolina. Environ. Sci. Technol. 2020, 54 (13), 8158–8166. https://doi.org/10.1021/acs.est.9b07102
Barry, V., Winquist, A., Steenland, K. Perfluorooctanoic acid (PFOA) exposures and incident cancers among adults living near a chemical plant. Environ. Health Perspectives, 2013, 121(11–12), 1313–1318. https://doi.org/10.1289/ehp.1306615
Barzen-Hanson, K. A.; Roberts, S. C.; Choyke, S.; Oetjen, K.; McAlees, A.; Riddell, N.; McCrindle, R.; Ferguson, P. L.; Higgins, C. P.; Field, J. A. Discovery of 40 classes of per- and polyfluoroalkyl substances in historical aqueous film-forming foams (AFFFS) and AFFF-impacted groundwater. Environ. Sci. Technol., 2017, 51, 4, 2047–2057. https://doi.org/10.1021/acs.est.6b05843
Beaucham, C. C.; Zeiler, R.; Fent, K.; Chiu, S. K.; Somerville, N.; Mayer, A.; Rinsky, J. L.; Estill, C. Serum Concentrations of Perfluoroalkyl and Polyfluoroalkyl Substances among First Responders to the Maui Wildfires — Hawaii, September 2023. MMWR Morb. Mortal. Wkly. Rep. 2025, 74 (3), 35–39. https://doi.org/10.15585/mmwr.mm7403a1
Bellia, G. R. M.; Bilott, R. A.; Sun, N.; Thompson, D.; Vasiliou, V. Use of Clinical Chemistry Health Outcomes and PFAS Chain Length to Predict 28-Day Rodent Oral Toxicity. Toxicol. Mech. Methods 2023, 33 (5), 378–387. https://doi.org/10.1080/15376516.2022.2150591.
Berhanu, A.; Mutanda, I.; Taolin, J.; Qaria, M. A.; Yang, B.; Zhu, D. A review of microbial degradation of per- and polyfluoroalkyl substances (PFAS): Biotransformation routes and enzymes. Sci. Total Environ., 2023, 859, 160010. https://doi.org/10.1016/j.scitotenv.2022.160010
Braun, J. M.; Chen, A.; Romano, M.; Calafat, A. M.; Webster, G. M.; Yolton, K.; Lanphear, B. P. Prenatal Perfluoroalkyl Substance Exposure and Child Adiposity at 8 Years of Age: The HOME Study. Obesity 2016, 24 (1), 231–237. https://doi.org/10.1002/oby.21258
Brunn, H.; Arnold, G.; Körner, W.; Rippen, G.; Steinhauser, K.-G. PFAS: Forever Chemicals—Persistent, Bioaccumulative and Mobile. Reviewing the Status and the Need for Their Phase Out and Remediation of Contaminated Sites. Environ. Sci. Eur. 2023, 35 (1), 21. https://doi.org/10.1186/s12302-023-00721-8
Buck, R. C.; Franklin, J.; Berger, U.; Conder, J. M.; Cousins, I. T.; et al. Perfluoroalkyl and Polyfluoroalkyl Substances in the Environment: Terminology, Classification, and Origins. Integr. Environ. Assess. Manag. 2011, 7 (4), 513–541. https://doi.org/10.1002/ieam.258.
Burlakova, V.; Mitchenko, T. A comprehensive review of the current state of organic emerging contaminants management in drinking water: Regulatory landscape, properties, health impacts, treatment methods. Water&Water Purification Technologies. Scientific and Technical News, 2024. 40(3), 15–42. https://doi.org/10.20535/2218-930032024332073
Cao, Y.; Ng, C. A. High-Throughput Screening of Protein Interactions with Per- and Polyfluoroalkyl Substances (PFAS) Used in Photolithography. J. Hazard. Mater. 2025, 587, 137235. https://doi.org/10.1016/j.jhazmat.2025.137235.
Cappelli, F.; Ait Bamai, Y.; Van Hoey, K.; Kim, D. H.; Covaci, A. Occurrence of Short- and Ultra-Short Chain PFAS in Drinking Water from Flanders (Belgium) and Implications for Human Exposure. Environ. Res. 2024, 260, 119753. https://doi.org/10.1016/j.envres.2024.119753
Chen, J.; Zhang, P.; Liu, J. Photodegradation of perfluorooctanoic acid by 185 nm vacuum ultraviolet light. J. Environ. Sci., 2007, 19(4), 387–390. https://doi.org/10.1016/s1001-0742(07)60064-3
Chow, S. J.; Ojeda, N.; Jacangelo, J. G.; Schwab, K. J. Detection of ultrashort-chain and other per- and polyfluoroalkyl substances (PFAS) in U.S. Bottled Water. Water Res., 2021, 201, 117292. https://doi.org/10.1016/j.watres.2021.117292
Christensen, K. Y.; Raymond, M.; Meiman, J. Perfluoroalkyl substances and metabolic syndrome. Int. J. Hyg. Environ. Health, 2019, 222(1), 147–153. https://doi.org/10.1016/j.ijheh.2018.08.014
Daly, E. R.; Chan, B. P.; Talbot, E. A.; Nassif, J.; Bean, C.; Cavallo, S. J.; Metcalf, E.; Simone, K.; Woolf, A. D. Per- and Polyfluoroalkyl Substance (PFAS) Exposure Assessment in a Community Exposed to Contaminated Drinking Water, New Hampshire, 2015. Int. J. Hyg. Environ. Health 2018, 221 (3), 569–577. https://doi.org/10.1016/j.ijheh.2018.02.007
Domingo, J. L.; Nadal, M. Human Exposure to Per- and Polyfluoroalkyl Substances (PFAS) through Drinking Water: A Review of the Recent Scientific Literature. Environ. Res. 2019, 177, 108648. https://doi.org/10.1016/j.envres.2019.108648
EFSA Panel on Contaminants in the Food Chain (EFSA CONTAM Panel). Risk to human health related to the presence of perfluoroalkyl substances in food. ESFA J. 2020, 18, https://www.efsa.europa.eu/en/efsajournal/pub/6223
Elgarahy, A. M.; Eloffy, M. G.; Saber, A. N.; Abouzid, M.; Rashad, E.; Ghorab, M. A.; El-Sherif, D. M.; Elwakeel, K. Z. Exploring the sources, occurrence, transformation, toxicity, monitoring, and remediation strategies of per- and Polyfluoroalkyl Substances: A Review. Environ. Monit. Assess. 2024, 196(12). https://doi.org/10.1007/s10661-024-13334-2
Fleury, E. S.; Kuiper, J. R.; Buckley, J. P.; Papandonatos, G. D.; Cecil, K. M.; Chen, A.; Eaton, C. B.; Kalkwarf, H. J.; Lanphear, B. P.; Yolton, K.; Braun, J. M. Evaluating the association between longitudinal exposure to a pfas mixture and adolescent cardiometabolic risk in the home study. Environ. Epidemiology, 2024, 8(1). https://doi.org/10.1097/ee9.0000000000000289
Forthun, I. H.; Roelants, M.; Haug, L. S.; Knutsen, H. K.; Schell, L. M.; Jugessur, A.; Bjerknes, R.; Sabaredzovic, A.; Bruserud, I. S.; Juliusson, P. B. Levels of Per- and Polyfluoroalkyl Substances (PFAS) in Norwegian Children Stratified by Age and Sex—Data from the Bergen Growth Study 2. Int. J. Hyg. Environ. Health 2023, 252, 114199. https://doi.org/10.1016/j.ijheh.2023.114199
Fragki, S.; Dirven, H.; Fletcher, T.; Grasl-Kraupp, B.; Gützkow, K. B.; Hoogenboom, R.; Kersten, S.; Lindeman, B.; Louisse, J.; Peijnenburg, A.; et al. Systemic PFOS and PFOA Exposure and Disturbed Lipid Homeostasis in Humans: What Do We Know and What Not? Crit. Rev. Toxicol. 2021, 51 (2), 141–164. https://doi.org/10.1080/10408444.2021.1888073
Gagliano, E.; Sgroi, M.; Falciglia, P. P., Vagliasindi, F. G. A.; Roccaro, P. Removal of poly- and perfluoroalkyl substances (PFAS) from water by adsorption: Role of pfas chain length, effect of organic matter and challenges in adsorbent regeneration. Water Res., 2020, 171, 115381. https://doi.org/10.1016/j.watres.2019.115381
Gaillard, L.; Barouki, R.; Blanc, E.; Coumoul, X.; Andréau, K. Per- and Polyfluoroalkyl Substances as Persistent Pollutants with Metabolic and Endocrine-Disrupting Impacts. Trends Endocrinol. Metab. 2024, 36(3), 249-261. https://doi.org/10.1016/j.tem.2024.07.021
Ganzleben, C.; Antignac, J.-P.; Sepai, O.; Tolonen, H.; Kolossa-Gehring, M.; Barouki, R.; Castaño, A.; Fiddicke, U.; Klanova, J.; Lebret, E.; et al. Human Biomonitoring as a Tool to Support Chemicals Regulation in the European Union. Int. J. Hyg. Environ. Health 2017, 220 (2), 94–97. https://doi.org/10.1016/j.ijheh.2017.01.007
Geiger, S. D.; Xiao, J.; Shankar, A. Positive association between perfluoroalkyl chemicals and hyperuricemia in children. Am. J. Epidemiol, 2013, 177(11), 1255–1262. https://doi.org/10.1093/aje/kws392
Giri, R. R.; Ozaki, H.; Okada, T.; Taniguchi, S.; Takanami, R. Factors influencing UV photodecomposition of perfluorooctanoic acid in water. Chem. Eng. J., 2012, 180, 197–203. https://doi.org/10.1016/j.cej.2011.11.049
González-Alvarez, M. E.; Antwi-Boasiako, C.; Keating, A. F. Effects of per- and polyfluoroalkylated substances on female reproduction. Toxics, 2024, 12(7), 455. https://doi.org/10.3390/toxics12070455
Guo, P.; Furnary, T.; Vasiliou, V.; Yan, Q.; Nyhan, K.; Jones, D. P.; Johnson, C. H.; Liew, Z. Non-Targeted Metabolomics and Associations with Per- and Polyfluoroalkyl Substances (PFAS) Exposure in Humans: A Scoping Review. Environ. Int. 2022, 162, 107159. https://doi.org/10.1016/j.envint.2022.107159
Halldorsson, T. I.; Rytter, D.; Haug, L. S.; Bech, B. H.; Danielsen, I.; Becher, G.; Henriksen, T. B.; Olsen, S. Prenatal Exposure to Perfluorooctanoate and Risk of Overweight at 20 Years of Age: A Prospective Cohort Study. Environ. Health Perspect. 2012, 120 (5), 668–673. https://doi.org/10.1289/ehp.1104034.
Hao, S.; Choi, Y. J.; Deeb, R. A.; Strathmann, T. J.; Higgins, C. P. Application of hydrothermal alkaline treatment for destruction of per- and polyfluoroalkyl substances in contaminated groundwater and soil. Environ. Sci. Technol., 2022, 56(10), 6647–6657. https://doi.org/10.1021/acs.est.2c00654
Hao, S.; Reardon, P. N.; Choi, Y. J.; Zhang, C.; Sanchez, J. M.; Higgins, C. P.; Strathmann, T. J. Hydrothermal Alkaline Treatment (HALT) of Foam Fractionation Concentrate Derived from PFAS-Contaminated Groundwater. Environ. Sci. Technol. 2023, 57 (44), 17154–17165. https://doi.org/10.1021/acs.est.3c05140
Harding-Marjanovic, K. C.; Houtz, E. F.; Yi, S.; Field, J. A.; Sedlak, D. L.; Alvarez-Cohen, L. Aerobic biotransformation of fluorotelomer thioether amido sulfonate (lodyne) in AFFF-amended microcosms. Environ. Sci. Technol., 2015, 49(13), 7666–7674. https://doi.org/10.1021/acs.est.5b01219
Haverinen, E.; Fernandez, M. F.; Mustieles, V.; Tolonen, H. Metabolic Syndrome and Endocrine Disrupting Chemicals: An Overview of Exposure and Health Effects. Int. J. Environ. Res. Public Health 2021, 18 (24), 13047. https://doi.org/10.3390/ijerph182413047
Hori, H.; Yamamoto, A.; Koike, K.; Kutsuna, S.; Osaka, I.; Arakawa, R. Photochemical Decomposition of Environmentally Persistent Short-Chain Perfluorocarboxylic Acids in Water Mediated by Iron(II)/(III) Redox Reactions. Chemosphere 2007, 68 (3), 572–578. https://doi.org/10.1016/j.chemosphere.2006.12.038
Hron, L. M. C.; Wöckner, M.; Fuchs, V.; Fembacher, L.; Aschenbrenner, B.; Herr, C.; Schober, W.; Heinze, S.; Völkel, W. Monitoring of Per- and Polyfluoroalkyl Substances (PFAS) in Human Blood Samples Collected in Three Regions with Known PFAS Releases in the Environment and Three Control Regions in South Germany. Arch. Toxicol. 2024, in press. https://doi.org/10.1007/s00204-024-03843-x
Hryhorczuk, D.; Levy, B. S.; Prodanchuk, M.; Kravchuk, O.; Bubalo, N.; Hryhorczuk, A.; Erickson, T. B. The Environmental Health Impacts of Russia’s War on Ukraine. J. Occup. Med. Toxicol. 2024, 19 (1), 1–10. https://doi.org/10.1186/s12995-023-00398-y.
Huang, R.; Chen, Q.; Zhang, L.; Luo, K.; Chen, L.; Zhao, S.; Feng, L.; Zhang, J. Prenatal Exposure to Perfluoroalkyl and Polyfluoroalkyl Substances and the Risk of Hypertensive Disorders of Pregnancy. Environ. Health 2019, 18, 99. https://doi.org/10.1186/s12940-018-0445-3
Huang, X.; Wang, H.; Song, X.; Han, Z.; Shu, Y.; Wu, J.; Luo, X.; Zheng, X.; Fan, Z. Ecological risks of pfas in China’s surface water: A machine learning approach. Environ. Int. 2025, 196, 109290. https://doi.org/10.1016/j.envint.2025.109290
Igarashi, Y.; Takahashi, M.; Tsutsumi, T.; Inoue, K.; Akiyama, H. Monitoring Analysis of Perfluoroalkyl Substances and F-53B in Bottled Water, Tea and Juice Samples by LC-MS/MS. Chem. Pharm. Bull. 2021, 69 (3), 286–290. https://doi.org/10.1248/cpb.c20-00888
Jackson-Browne, M. S.; Eliot, M.; Patti, M.; Spanier, A. J.; Braun, J. M. PFAS (Per- and Polyfluoroalkyl Substances) and Asthma in Young Children: NHANES 2013–2014. Int. J. Hyg. Environ. Health 2020, 229, 113565. https://doi.org/10.1016/j.ijheh.2020.113565.
Jin, T.; Peydayesh, M.; Mezzenga, R. Membrane-Based Technologies for Per- and Poly-Fluoroalkyl Substances (PFASs) Removal from Water: Removal Mechanisms, Applications, Challenges and Perspectives. Environ. Int. 2021, 157, 106876. https://doi.org/10.1016/j.envint.2021.106876
Jurikova, M.; Dvorakova, D.; Pulkabova, J. The Occurrence of Perfluoroalkyl Substances (PFAS) in Drinking Water in the Czech Republic: A Pilot Study. Environ. Sci. Pollut. Res. 2022, 29 (40), 60341–60353. https://doi.org/10.1007/s11356-022-20156-7
Kim, M. J.; Moon, S.; Oh, B.-C.; Jung, D.; Ji, K.; Choi, K.; Park, Y. J. Association between perfluoroalkyl substances exposure and thyroid function in adults: A meta-analysis. PLOS ONE, 2018, 13(5). https://doi.org/10.1371/journal.pone.0197244
Kim, Y.; Shin, S.; Choe, Y.; Cho, J.; Kim, C.; Kim, S. H.; Kim, K.-N. Associations of per- and polyfluoroalkyl substances and heavy metals with blood lipid profiles in a representative sample of Korean adolescents. Environ. Health, 2024, 23(1). https://doi.org/10.1186/s12940-024-01144-5
Koban, L. A.; Pfluger, A. R. Per- and Polyfluoroalkyl Substances (PFAS) Exposure through Munitions in the Russia-Ukraine Conflict. Integr. Environ. Assess. Manag. 2022, 19 (2), 376–381. https://doi.org/10.1002/ieam.4672
Lenka, S. P.; Kah, M.; Padhye, L. P. A review of the occurrence, transformation, and removal of poly- and perfluoroalkyl substances (PFAS) in wastewater treatment plants. Water Res., 2021, 199, 117187. https://doi.org/10.1016/j.watres.2021.117187
Lewis, N.; Abdulkadir, A.; Kandel, S.; Rosby, R.; Hossain, E. Per- and Polyfluoroalkyl Substances (PFAS) as Emerging Obesogens: Mechanisms, Epidemiological Evidence, and Regulatory Challenges. Physiologia 2024, 4 (4), 517–567. https://doi.org/10.3390/physiologia4040035
Li, J.; Pinkard, B. R.; Wang, S.; Novosselov, I. V. Hydrothermal Treatment of Per- and Polyfluoroalkyl Substances (PFAS). Chemosphere 2022, 307 (Pt 2), 135888. https://doi.org/10.1016/j.chemosphere.2022.135888
Liu, C. J.; McKay, G.; Jiang, D.; Tenorio, R.; Cath, J. T.; Amador, C.; Murray, C. C.; Brown, J. B.; Wright, H. B.; Schaefer, C.; Higgins, C. P.; Bellona, C.; Strathmann, T. J. Pilot-Scale Field Demonstration of a Hybrid Nanofiltration and UV-Sulfite Treatment Train for Groundwater Contaminated by Per- and Polyfluoroalkyl Substances (PFASs). Water Res. 2021, 205, 117677. https://doi.org/10.1016/j.watres.2021.117677
Liu, F.; Guan, X.; Xiao, F. Photodegradation of Per- and Polyfluoroalkyl Substances in Water: A Review of Fundamentals and Applications. J. Hazard. Mater. 2022, 439, 129580. https://doi.org/10.1016/j.jhazmat.2022.129580
Liu, G.; Zhang, B.; Hu, Y.; Rood, J.; Liang, L.; Qi, L.; Bray, G. A.; DeJonge, L.; Coull, B.; Grandjean, P.; Furtado, J. D.; Sun, Q. Associations of perfluoroalkyl substances with blood lipids and Apolipoproteins in lipoprotein subspecies: The pounds-lost study. Environ. Health, 2020, 19(1). https://doi.org/10.1186/s12940-020-0561-8
Matilla-Santander, N.; Valvi, D., Lopez-Espinosa, M.-J.; Manzano-Salgado, C. B.; Ballester, F.; Ibarluzea, J.; Santa-Marina, L.; Schettgen, T.; Guxens, M.; Sunyer, J.; Vrijheid, M. Exposure to perfluoroalkyl substances and metabolic outcomes in pregnant women: Evidence from the Spanish Inma Birth cohorts. Environ. Health Perspect., 2017, 125(11). https://doi.org/10.1289/ehp1062
McCleaf, P.; Englund, S.; Östlund, A.; Lindegren, K.; Wiberg, K.; Ahrens, L. Removal Efficiency of Multiple Poly- and Perfluoroalkyl Substances (PFASs) in Drinking Water Using Granular Activated Carbon (GAC) and Anion Exchange (AE) Column Tests. Water Res. 2017, 120, 77–87. https://doi.org/10.1016/j.watres.2017.04.057.
McIntyre, H.; Minda, V.; Hawley, E.; Deeb, R.; Hart, M. Coupled photocatalytic alkaline media as a destructive technology for per- and polyfluoroalkyl substances in aqueous film-forming foam impacted stormwater. Chemosphere, 2022, 291, 132790. https://doi.org/10.1016/j.chemosphere.2021.132790
Meegoda, J. N.; Kewalramani, J. A.; Li, B.; Marsh, R. W. A review of the applications, environmental release, and remediation technologies of per- and polyfluoroalkyl substances. Int. J. Environ. Res. Public Health, 2020, 17(21), 8117. https://doi.org/10.3390/ijerph17218117
Mi, X.; Yang, Y.-Q.; Zeeshan, M.; Wang, Z.-B.; Zeng, X.-Y.; Zhou, Y.; Yang, B.-Y.; Hu, L.-W.; Yu, H.-Y.; Liu, R.-Q.; et al. Serum Levels of Per- and Polyfluoroalkyl Substances Alternatives and Blood Pressure by Sex Status: Isomers of C8 Health Project in China. Chemosphere 2020, 261, 127691. https://doi.org/10.1016/j.chemosphere.2020.127691
Miserli, K.; Athanasiou, V.; Boti, V.; Hela, D.; Konstantinou, I. Determination of pfas in wastewaters and natural waters by solid phase extraction and UHPLC LTQ/Orbitrap MS for assessing occurrence and removals. Case Stud Chem Environ Eng., 2023, 8, 100505. https://doi.org/10.1016/j.cscee.2023.100505
Mondal, D.; Lopez-Espinosa, M.-J.; Armstrong, B.; Stein, C. R.; Fletcher, T. Relationships of Perfluorooctanoate and Perfluorooctane Sulfonate Serum Concentrations between Mother–Child Pairs in a Population with Perfluorooctanoate Exposure from Drinking Water. Environ. Health Perspect. 2012, 120 (5), 752–757. https://doi.org/10.1289/ehp.1104538
Peritore, A. F.; Gugliandolo, E.; Cuzzocrea, S.; Crupi, R.; Britti, D. Current review of increasing animal health threat of per- and polyfluoroalkyl substances (PFAS): Harms, Limitations, and alternatives to manage their toxicity. Int. J. Mol. Sci., 2023, 24(14), 11707. https://doi.org/10.3390/ijms241411707
Peterson, A. K.; Eckel, S. P.; Habre, R.; Yang, T.; Faham, D.; Farzan, S. F.; Grubbs, B. H.; Kannan, K.; Robinson, M.; Lerner, D.; Al-Marayati, L. A.; Walker, D. K.; Grant, E. G.; Bastain, T. M.; Breton, C. V. Prenatal Perfluorooctanoic Acid (PFOA) Exposure Is Associated with Lower Infant Birthweight within the MADRES Pregnancy Cohort. Front. Epidemiol. 2022, 2, 934715. https://doi.org/10.3389/fepid.2022.934715.
Pinkard, B. R.; Austin, C.; Purohit, A. L.; Li, J.; Novosselov, I. V. Destruction of pfas in AFFF-impacted fire training pit water, with a continuous hydrothermal alkaline treatment reactor. Chemosphere, 2023, 314, 137681 https://doi.org/10.1016/j.chemosphere.2022.137681
Preston, E. V.; Rifas-Shiman, S. L.; Hivert, M.-F.; Zota, A. R.; Sagiv, S. K.; Calafat, A. M.; Oken, E.; James-Todd, T. Associations of per- and polyfluoroalkyl substances (PFAS) with glucose tolerance during pregnancy in Project Viva. J. Clin. Endocrinol. Metab., 2020, 105(8). https://doi.org/10.1210/clinem/dgaa328
Qi, W.; Clark, J. M.; Timme-Laragy, A. R.; Park, Y. Per- and Polyfluoroalkyl Substances and Obesity, Type 2 Diabetes and Non-Alcoholic Fatty Liver Disease: A Review of Epidemiologic Findings. Toxicol. Environ. Chem. 2020, 102 (1–4), 1–36. https://doi.org/10.1080/02772248.2020.1763997
Rappazzo, K. M.; Coffman, E.; Hines, E. P. Exposure to Perfluorinated Alkyl Substances and Health Outcomes in Children: A Systematic Review of the Epidemiologic Literature. Int. J. Environ. Res. Public Health 2017, 14 (7), 691. https://doi.org/10.3390/ijerph14070691
Rickard, B. P.; Rizvi, I.; Fenton, S. E. Per- and Polyfluoroalkyl Substances (PFAS) and Female Reproductive Outcomes: PFAS Elimination, Endocrine-Mediated Effects, and Disease. Toxicol. 2021, 465, 153031. https://doi.org/10.1016/j.tox.2021.153031.
Romano, M. E.; Heggeseth, B. C.; Gallagher, L. G.; Botelho, J. C.; Calafat, A. M.; Gilbert-Diamond, D.; Karagas, M. R. Gestational per- and polyfluoroalkyl substances exposure and infant body mass index trajectory in the New Hampshire Birth Cohort Study. Environ. Res., 2022, 215, 114418. https://doi.org/10.1016/j.envres.2022.114418
Rosato, I.; Bonato, T.; Fletcher, T.; Batzella, E.; Canova, C. Estimation of per- and polyfluoroalkyl substances (PFAS) half-lives in human studies: A systematic review and meta-analysis. Environ. Res., 2024, 242, 117743. https://doi.org/10.1016/j.envres.2023.117743
Rosen, E. M.; Kotlarz, N.; Knappe, D. R. U.; Lea, C. S.; Collier, D. N.; Richardson, D. B.; Hoppin, J. A. Drinking water–associated pfas and fluoroethers and lipid outcomes in the GenX exposure study. Environ. Health Perspect., 2022, 130(9). https://doi.org/10.1289/ehp11033
Saawarn, B.; Mahanty, B.; Hait, S.; Hussain, S. Sources, Occurrence, and Treatment Techniques of Per- and Polyfluoroalkyl Substances in Aqueous Matrices: A Comprehensive Review. Environ. Res. 2022, 214 (Pt 4), 114004. https://doi.org/10.1016/j.envres.2022.114004
Santhanam, S. D.; Ramamurthy, K.; Priya, P. S.; Sudhakaran, G.; Guru, A.; Arockiaraj, J. A combinational threat of micro- and nano-plastics (MNPS) as potential emerging vectors for per- and polyfluoroalkyl substances (PFAS) to human health. Environ Monit Assess, 2024, 196(12), 1182. https://doi.org/10.1007/s10661-024-13292-9
Schoeters, G.; Lange, R.; Kolossa, M.; Barouki, R.; Tarroja, E.; Uhl, M.; Klanova, J.; Melymuk, L.; Horvat, M.; Bocca, B.; et al. Reporting for First and Second Set of Substances: Scoping Document for 2021 for the First and Second Round HBM4EU Priority Substances; HBM4EU, 2020; 85p. https://www.hbm4eu.eu/wp-content/uploads/2021/03/HBM4EU_AD5.4_Reporting_first_and_second_set_substances_v1.1.pdf.
Schwanz, T. G.; Llorca, M.; Farré, M.; Barceló, D. Perfluoroalkyl Substances Assessment in Drinking Waters from Brazil, France and Spain. Sci. Total Environ. 2016, 539, 143–152. https://doi.org/10.1016/j.scitotenv.2015.08.034.
Schymanski, E. L.; Zhang, J.; Thiessen, P. A.; Chirsir, P.; Kondic, T.; Bolton, E. E. Per- and Polyfluoroalkyl Substances (PFAS) in PubChem: 7 Million and Growing. Environ. Sci. Technol. 2023, 57 (44), 16918–16928. https://doi.org/10.1021/acs.est.3c04855.
Scott, J. W.; Gunderson, K. G.; Green, L. A.; Rediske, R. R.; Steinman, A. D. Perfluoroalkylated Substances (PFAS) Associated with Microplastics in a Lake Environment. Toxics 2021, 9 (5), 106. https://doi.org/10.3390/toxics9050106.
Song, C.; Chen, P.; Wang, C.; Zhu, L. Photodegradation of Perfluorooctanoic Acid by Synthesized TiO₂–MWCNT Composites under 365 nm UV Irradiation. Chemosphere 2011, 86 (9), 853–859. https://doi.org/10.1016/j.chemosphere.2011.11.034
Sun, Z.; Wen, Y.; Wang, B.; Deng, S.; Zhang, F.; Fu, Z.; Yuan, Y.; Zhang, D. Toxic Effects of Per- and Polyfluoroalkyl Substances on Sperm: Epidemiological and Experimental Evidence. Front. Endocrinol. 2023, 14, 1114463. https://doi.org/10.3389/fendo.2023.1114463
U.S. Environmental Protection Agency. National Primary Drinking Water Regulations (40 CFR Part 141); U.S. Environmental Protection Agency: Washington, DC, 2024. https://www.ecfr.gov/current/title-40/chapter-I/subchapter-D/part-141
U.S. Environmental Protection Agency. Per- and Polyfluoroalkyl Substances (PFAS). Final PFAS National Primary Drinking Water Regulation. 2024, https://www.epa.gov/system/files/documents/2024-04/pfas-npdwr_fact-sheet_general_4.9.24v1.pdf
Verma, S.; Mezgebe, B.; Hejase, C. A.; Sahle-Demessie, E.; Nadagouda, M. N. Photodegradation and Photocatalysis of Per- and Polyfluoroalkyl Substances (PFAS): A Review of Recent Progress. Next Mater. 2024, 2, 1–12. https://doi.org/10.1016/j.nxmate.2023.100077
Verma, S.; Verma, R. S.; Nadagouda, M. N. Remediation and Mineralization Processes for Per- and Polyfluoroalkyl Substances (PFAS) in Water: A Review. Sci. Total Environ. 2021, 794, 148987. https://doi.org/10.1016/j.scitotenv.2021.148987.
Wanninayake, D. M. Comparison of Currently Available PFAS Remediation Technologies in Water: A Review. J. Environ. Manage. 2021, 283, 111977. https://doi.org/10.1016/j.jenvman.2021.111977.
Wen, Y.; Mirji, N.; Irudayaraj, J. Epigenetic Toxicity of PFOA and GenX in HepG2 Cells and Their Role in Lipid Metabolism. Toxicol. Vitr. 2020, 65, 104797. https://doi.org/10.1016/j.tiv.2020.104797.
Wu, C.; Klemes, M. J.; Trang, B.; Dichtel, W. R.; Helbling, D. E. Exploring the factors that influence the adsorption of anionic PFAS on conventional and emerging adsorbents in aquatic matrices. Water Res., 2020, 182, 115950. https://doi.org/10.1016/j.watres.2020.115950
Xu, H.; Zhou, Q.; Zhang, J.; Chen, X.; Zhao, H.; Lu, H.; Ma, B.; Wang, Z.; Wu, C.; Ying, C.; Xiong, Y.; Zhou, Z.; Li, X. Exposure to elevated per- and polyfluoroalkyl substances in early pregnancy is related to increased risk of gestational diabetes mellitus: A nested case-control study in Shanghai, China. Environ. Intern., 2020, 143, 105952. https://doi.org/10.1016/j.envint.2020.105952
Yan, B.; Wang, J.; Liu, J. STXM-XANES and Computational Investigations of Adsorption of Per- and Polyfluoroalkyl Substances on Modified Clay. Water Res. 2021, 201, 117371. https://doi.org/10.1016/j.watres.2021.117371
Yang, J.; Vahapoglu, L.; Aga, D. S. Beyond Water: Solution-Focused Communication and Regulation Are Required to Address Per- and Polyfluoroalkyl Substances Pollution. One Earth 2024, 7 (6), 946–950. https://doi.org/10.1016/j.oneear.2024.05.003.
Yang, Z.; Zhu, Y.; Tan, X.; Gunjal, S. J.; Dewapriya, P.; Wang, Y.; Xin, R.; Fu, C.; Liu, K.; Macintosh, K.; Sprague, L. G.; Leung, L.; Hopkins, T. E.; Thomas, K. V.; Guo, J.; Whittaker, A. K.; Zhang, C. Fluoropolymer sorbent for efficient and selective capturing of per- and polyfluorinated compounds. Nat. Commun., 2024, 15(1). https://doi.org/10.1038/s41467-024-52690-y
Ye, X.; Kato, K.; Wong, L.-Y.; Jia, T.; Kalathil, A.; Latremouille, J.; Calafat, A. M. Per- and Polyfluoroalkyl Substances in Sera from Children 3 to 11 Years of Age Participating in the National Health and Nutrition Examination Survey 2013–2014. Int. J. Hyg. Environ. Health 2018, 221 (1), 9–16. https://doi.org/10.1016/j.ijheh.2017.09.011.
Zhang, Y.; Beesoon, S.; Zhu, L.; Martin, J. W. Biomonitoring of perfluoroalkyl acids in human urine and estimates of biological half-life. Environ. Sci. Technol., 2013, 47(18), 10619–10627. https://doi.org/10.1021/es401905e
Zhao, X.; Zhang, S.; Hu, Z.; Ren, Z.; Wang, T.; Zhu, B.; An, L.; Wang, H.; Liu, J. Research on the PFAS Release and Migration Behavior of Multi-Layer Outdoor Jacket Fabrics. J. Hazard. Mater. 2025, 487, 137218. https://doi.org/10.1016/j.jhazmat.2025.137218.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Andrusyshyna I., Kosohin A., Kosogina I.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The ownership of copyright remains with the Authors.
Authors may use their own material in other publications provided that the Journal is acknowledged as the original place of publication and National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” as the Publisher.
Authors are reminded that it is their responsibility to comply with copyright laws. It is essential to ensure that no part of the text or illustrations have appeared or are due to appear in other publications, without prior permission from the copyright holder.
WPT articles are published under Creative Commons licence:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under CC BY-NC 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. The use of the material for commercial purposes is not permitted.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.