A COMPREHENSIVE REVIEW OF THE CURRENT STATE OF ORGANIC EMERGING CONTAMINANTS MANAGEMENT IN DRINKING WATER: REGULATORY LANDSCAPE, PROPERTIES, HEALTH IMPACTS, TREATMENT METHODS

Authors

DOI:

https://doi.org/10.20535/2218-930032024332073

Keywords:

adsorption, drinking water, emerging contaminant, legislation, organic micropollutants, reverse osmosis

Abstract

This study provides a comprehensive assessment of the growing challenge posed by organic emerging contaminants in drinking water systems. A comparative analysis is conducted on key pollutants, including per- and polyfluoroalkyl substances, pesticides, bisphenol A, nonylphenol, 1,4-dioxane, and β-estradiol, focusing on their occurrence, physicochemical characteristics, environmental persistence, and health impacts on both ecosystems and human populations. These substances frequently exhibit similar traits such as hydrophobicity, low volatility, and resistance to conventional water treatment processes, thereby significantly complicating their effective removal using standard technologies. Regulatory frameworks in the European Union, the United States, China, and Ukraine are critically examined, with attention to both recent regulatory advancements and persistent gaps that hinder uniform international control. In addition, a detailed assessment of current water treatment technologies, including adsorption, ion exchange, and membrane filtration, which demonstrate a fairly high efficiency in pollutant removal under optimized operational conditions, is provided. However, challenges remain related to the regeneration of spent sorbents, membrane fouling, operational costs, and safe waste management. Oxidative methods, such as ozonation, UV irradiation, and advanced oxidation processes, are effective for the destruction of organic micropollutants, although the formation of potentially hazardous by-products, such as aldehydes, carboxylic acids, or halogenated organics, requires further water treatment. The effective removal of organic micropollutants from water requires the integration of strategies for both physical removal and chemical or biological degradation. Degradation technologies, such as incineration, electrochemical degradation, supercritical water oxidation, and biodegradation, demonstrate varying efficiency and levels of environmental sustainability and are often limited by high energy consumption, high operational costs, or incomplete mineralization of pollutants. The findings highlight the pressing need for further enhancement of international regulations, the development of cost-effective, energy-efficient, and sustainable advanced treatment technologies, and the adoption of integrated water management strategies to ensure the long-term protection of public health and drinking water resources globally.

References

Adamson, D. T.; Piña, E. A.; Cartwright, A. E.; Rauch, S. R.; Hunter Anderson, R.; Mohr, T.; Connor, J. A. 1,4-Dioxane Drinking Water Occurrence Data from the Third Unregulated Contaminant Monitoring Rule. Sci. Total Environ. 2017, 596–597, 236–245. https://doi.org/10.1016/j.scitotenv.2017.04.085.

Adeel, M.; Song, X.; Wang, Y.; Francis, D.; Yang, Y. Environmental Impact of Estrogens on Human, Animal and Plant Life: A Critical Review. Environ. Int. 2017, 99, 107–119. https://doi.org/10.1016/j.envint.2016.12.010.

Alam, M. S.; Tahriri, F.; Chen, G. Trends, Challenges, and Research Pathways in Emerging Contaminants: A Comprehensive Bibliometric Analysis. Integr. Environ. Assess. Manag. 2025, vjae036. https://doi.org/10.1093/inteam/vjae036.

Aziz, M.; Ojumu, T. Exclusion of Estrogenic and Androgenic Steroid Hormones from Municipal Membrane Bioreactor Wastewater Using UF/NF/RO Membranes for Water Reuse Application. Membranes 2020, 10 (3), 37. https://doi.org/10.3390/membranes10030037.

Barrera-Díaz, C. E.; Frontana-Uribe, B. A.; Rodríguez-Peña, M.; Gomez-Palma, J. C.; Bilyeu, B. Integrated Advanced Oxidation Process, Ozonation-Electrodegradation Treatments, for Nonylphenol Removal in Batch and Continuous Reactor. Catal. Today 2018, 305, 108–116. https://doi.org/10.1016/j.cattod.2017.09.003.

Bein, E.; Seiwert, B.; Reemtsma, T.; Drewes, J. E.; Hübner, U. Advanced Oxidation Processes for Removal of Monocyclic Aromatic Hydrocarbon from Water: Effects of O₃/H₂O₂ and UV/H₂O₂ Treatment on Product Formation and Biological Post-Treatment. J. Hazard. Mater. 2023, 131066. https://doi.org/10.1016/j.jhazmat.2023.131066.

Bennett, J. L.; Mackie, A. L.; Park, Y.; Gagnon, G. A. Advanced Oxidation Processes for Treatment of 17β-Estradiol and Its Metabolites in Aquaculture Wastewater. Aquacult. Eng. 2018, 83, 40–46. https://doi.org/10.1016/j.aquaeng.2018.08.003.

Carotenuto, M.; Libralato, G.; Gürses, H.; Siciliano, A.; Rizzo, L.; Guida, M.; Lofrano, G. Nonylphenol Deca-Ethoxylate Removal from Wastewater by UV/H₂O₂: Degradation Kinetics and Toxicity Effects. Process Saf. Environ. Prot. 2019, 124, 1–7. https://doi.org/10.1016/j.psep.2019.01.030.

Carrera, G.; Vegué, L.; Ventura, F.; Hernández-Valencia, A.; Devesa, R.; Boleda, M. R. Dioxanes and Dioxolanes in Source Waters: Occurrence, Odor Thresholds and Behavior through Upgraded Conventional and Advanced Processes in a Drinking Water Treatment Plant. Water Res. 2019, 156, 404–413. https://doi.org/10.1016/j.watres.2019.03.026.

Chen, H. W.; Liang, C. H.; Wu, Z. M.; Chang, E. E.; Lin, T. F.; Chiang, P. C.; Wang, G. S. Occurrence and Assessment of Treatment Efficiency of Nonylphenol, Octylphenol and Bisphenol-A in Drinking Water in Taiwan. Sci. Total Environ. 2013, 449, 20–28. https://doi.org/10.1016/j.scitotenv.2013.01.038.

Chen, R.; Yang, Q.; Zhong, Y.; Li, X.; Liu, Y.; Li, X.-M.; Du, W.-X.; Zeng, G.-M. Sorption of Trace Levels of Bromate by Macroporous Strong Base Anion Exchange Resin: Influencing Factors, Equilibrium Isotherms and Thermodynamic Studies. Desalination 2014, 344, 306–312. https://doi.org/10.1016/j.desal.2014.04.001.

Covert, S. A.; Shoda, M. E.; Stackpoole, S. M.; Stone, W. W. Pesticide Mixtures Show Potential Toxicity to Aquatic Life in U.S. Streams, Water Years 2013–2017. Sci. Total Environ. 2020, 745, 141285. https://doi.org/10.1016/j.scitotenv.2020.141285.

Crini, G.; Bradu, C.; Fourmentin, M.; Cosentino, C.; Ribeiro, A. R. L.; Morin-Crini, N. Sorption of 4-n-Nonylphenol, 4-n-Octylphenol, and 4-tert-Octylphenol on Cyclodextrin Polymers. Environ. Sci. Pollut. Res. 2021, 28, 1–13. https://doi.org/10.1007/s11356-021-14435-y.

Crini, G.; Cosentino, C.; Bradu, C.; Fourmentin, M.; Torri, G.; Ruzimuradov, O.; et al. Advanced Treatments for the Removal of Alkylphenols and Alkylphenol Polyethoxylates from Wastewater. In Environmental Chemistry for a Sustainable World; Springer International Publishing: Cham, 2021; pp 305–398. https://doi.org/10.1007/978-3-030-69090-8_4.

Dagorn, G.; Aubert, R.; Horel, S.; Martinon, L.; Steffen, T.; et al. ‘Forever Pollution’: Explore the Map of Europe’s PFAS Contamination. Le Monde, February 23, 2023. https://www.lemonde.fr/en/les-decodeurs/article/2023/02/23/forever-pollution-explore-the-map-of-europe-s-pfas-contamination_6016905_8.html.

Dai, X.; Xie, Z.; Dorian, B.; Gray, S.; Zhang, J. Comparative Study of PFAS Treatment by UV, UV/Ozone, and Fractionations with Air and Ozonated Air. Environ. Sci.: Water Res. Technol. 2019, 5 (11), 1897–1907. https://doi.org/10.1039/c9ew00701f.

De Boer, S.; Wiegand, L.; Karges, U. 1,4-Dioxane in German Drinking Water: Origin, Occurrence, and Open Questions. Curr. Opin. Environ. Sci. Health 2022, 30, 100391. https://doi.org/10.1016/j.coesh.2022.100391.

Domingo, J. L.; Nadal, M. Human Exposure to Per- and Polyfluoroalkyl Substances (PFAS) through Drinking Water: A Review of the Recent Scientific Literature. Environ. Res. 2019, 177, 108648. https://doi.org/10.1016/j.envres.2019.108648.

Ebrahimzadeh, S.; Wols, B.; Azzellino, A.; Kramer, F.; van der Hoek, J. P. Removal of Organic Micropollutants in a Drinking Water Treatment Plant by Powdered Activated Carbon Followed by Rapid Sand Filtration. J. Water Process Eng. 2022, 49, 102792. https://doi.org/10.1016/j.jwpe.2022.102792.

Elias, K. D.; Ejidike, I. P.; Mtunzi, F. M.; Pakade, V. E. Endocrine Disruptors (Estrone and β-Estradiol) Removal from Water by Nutshell Activated Carbon: Kinetic, Isotherms and Thermodynamic Studies. Chem. Thermodyn. Therm. Anal. 2021, 3–4, 100013. https://doi.org/10.1016/j.ctta.2021.100013.

European Environment Agency. The European Environment — State and Outlook 2018: Knowledge for Transition to a Sustainable Europe; EEA Report No. 18/2018, 2018. https://www.eea.europa.eu/publications/soer-2018.

European Environment Agency. Pesticides in Rivers, Lakes, and Groundwater in Europe; 2024. https://www.eea.europa.eu/en/european-zero-pollution-dashboards/indicators/pesticides-in-rivers-lakes-and-groundwater-in-europe?activeTab=658e2886-cfbf-4c2f-a603-061e1627a515.

European Parliament and Council of the European Union. Directive 98/83/EC of the European Parliament and of the Council of 3 November 1998 on the Quality of Water Intended for Human Consumption. Off. J. Eur. Communities 1998, L 330, 32–54. https://eur-lex.europa.eu/eli/dir/1998/83/oj/eng.

European Parliament and Council of the European Union. Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the Quality of Water Intended for Human Consumption. Off. J. Eur. Union 2020, L 435, 1–62. https://eur-lex.europa.eu/eli/dir/2020/2184/oj/eng.

Evans, S.; Campbell, C.; Naidenko, O. V. Analysis of Cumulative Cancer Risk Associated with Disinfection Byproducts in United States Drinking Water. Int. J. Environ. Res. Public Health 2020, 17 (6), 2149. https://doi.org/10.3390/ijerph17062149.

Evlampidou, I.; Font-Ribera, L.; Rojas-Rueda, D.; Gracia-Lavedan, E.; Costet, N.; Pearce, N.; Vineis, P.; Jaakkola, J. J. K.; Delloye, F.; Makris, K. C.; Stephanou, E. G.; Kargaki, S.; Kozisek, F.; Sigsgaard, T.; Hansen, B.; Schullehner, J.; Nahkur, R.; Galey, C.; Zwiener, C.; Villanueva, C. M. Trihalomethanes in Drinking Water and Bladder Cancer Burden in the European Union. Environ. Health Perspect. 2020, 128 (1), 017001. https://doi.org/10.1289/EHP4495.

Ferhi, S.; Vieillard, J.; Garau, C.; Poultier, O.; Demey, L.; Beaulieu, R.; Penalva, P.; Gobert, V.; Portet-Koltalo, F. Pilot-Scale Direct UV-C Photodegradation of Pesticides in Groundwater and Recycled Wastewater for Agricultural Use. J. Environ. Chem. Eng. 2021, 9 (5), 106120. https://doi.org/10.1016/j.jece.2021.106120.

Franke, V.; Schäfers, M. D.; Joos Lindberg, J.; Ahrens, L. Removal of Per- and Polyfluoroalkyl Substances (PFASs) from Tap Water Using Heterogeneously Catalyzed Ozonation. Environ. Sci.: Water Res. Technol. 2019, 5 (11), 1887–1896. https://doi.org/10.1039/c9ew00339h.

Fujioka, T.; Kodamatani, H.; Yujue, W.; Yu, K. D.; Wanjaya, E. R.; Yuan, H.; Fang, M.; Snyder, S. A. Assessing the Passage of Small Pesticides through Reverse Osmosis Membranes. J. Membr. Sci. 2020, 595, 117577. https://doi.org/10.1016/j.memsci.2019.117577.

Funari Junior, R. A.; Frescura, L. M.; de Menezes, B. B.; da Rosa, M. B. 4-Nonylphenol Adsorption, Environmental Impact and Remediation: A Review. Environ. Chem. Lett. 2024, in press. https://doi.org/10.1007/s10311-024-01788-2.

Gagliano, E.; Sgroi, M.; Falciglia, P. P.; Vagliasindi, F. G. A.; Roccaro, P. Removal of Poly- and Perfluoroalkyl Substances (PFAS) from Water by Adsorption: Role of PFAS Chain Length, Effect of Organic Matter and Challenges in Adsorbent Regeneration. Water Res. 2020, 171, 115381. https://doi.org/10.1016/j.watres.2019.115381.

Garcia, N.; Moreno, J.; Cartmell, E.; Rodriguez-Roda, I.; Judd, S. The Application of Microfiltration–Reverse Osmosis/Nanofiltration to Trace Organics Removal for Municipal Wastewater Reuse. Environ. Technol. 2013, 34 (24), 3183–3189. https://doi.org/10.1080/09593330.2013.808244.

Gatz, L. Contaminants of Emerging Concern Under the Clean Water Act (R45998); Congressional Research Service: Washington, D.C., 2021. https://www.congress.gov/crs/external/products/R/PDF/R45998/R45998.3.pdf.

Golovko, O.; de Brito Anton, L.; Cascone, C.; Ahrens, L.; Lavonen, E.; Köhler, S. J. Sorption Characteristics and Removal Efficiency of Organic Micropollutants in Drinking Water Using Granular Activated Carbon (GAC) in Pilot-Scale and Full-Scale Tests. Water 2020, 12 (7), 2053. https://doi.org/10.3390/w12072053.

Govarts, E.; Gilles, L.; Rodriguez Martin, L.; Santonen, T.; Apel, P.; Alvito, P.; ... Schoeters, G. Harmonized Human Biomonitoring in European Children, Teenagers and Adults: EU-Wide Exposure Data of 11 Chemical Substance Groups from the HBM4EU Aligned Studies (2014–2021). Int. J. Hyg. Environ. Health 2023, 249, 114119. https://doi.org/10.1016/j.ijheh.2023.114119.

Guerra, P.; Kim, M.; Teslic, S.; Alaee, M.; Smyth, S. A. Bisphenol-A Removal in Various Wastewater Treatment Processes: Operational Conditions, Mass Balance, and Optimization. J. Environ. Manag. 2015, 152, 192–200. https://doi.org/10.1016/j.jenvman.2015.01.044.

Hasan, N. I.; Makki, H. F. Disinfection By-Product Removal by Activated Carbon-Using Batch Mode. IOP Conf. Ser.: Earth Environ. Sci. 2021, 790 (1), 012035. https://doi.org/10.1088/1755-1315/790/1/012035.

Ho, K. T.; Konovets, I. M.; Terletskaya, A. V.; Milyukin, M. V.; Lyashenko, A. V.; Shitikova, L. I.; Shevchuk, L. I.; Afanasyev, S. A.; Krot, Y. G.; Zorina-Sakharova, K. Y.; Goncharuk, V. V.; Skrynnyk, M. M.; Cashman, M. A.; Burgess, R. M. Contaminants, Mutagenicity and Toxicity in the Surface Waters of Kyiv, Ukraine. Mar. Pollut. Bull. 2020, 155, 111153. https://doi.org/10.1016/j.marpolbul.2020.111153.

Hryhorczuk, D.; Levy, B. S.; Prodanchuk, M.; Kravchuk, O.; Bubalo, N.; Hryhorczuk, A.; Erickson, T. B. The Environmental Health Impacts of Russia’s War on Ukraine. J. Occup. Med. Toxicol. 2024, 19 (1). https://doi.org/10.1186/s12995-023-00398-y.

Huang, F.; Gao, F.; Li, C.; Campos, L. C. Photodegradation of Free Estrogens Driven by the UV Light: Effects of Operation Mode and Water Matrix. Sci. Total Environ. 2022a, 849, 155515. https://doi.org/10.1016/j.scitotenv.2022.155515.

Huang, X.; Wang, H.; Song, X.; Han, Z.; Shu, Y.; Wu, J.; Luo, X.; Zheng, X.; Fan, Z. Ecological Risks of PFAS in China’s Surface Water: A Machine Learning Approach. Environ. Int. 2025, 183, 109290. https://doi.org/10.1016/j.envint.2025.109290.

Huang, W.-C.; Liu, M.; Zhang, F.-G.; Li, D.; Du, Y.; Chen, Y.; Wu, Q.-Y. Removal of Disinfection Byproducts and Toxicity of Chlorinated Water by Post-Treatments of Ultraviolet/Hydrogen Peroxide and Ultraviolet/Peroxymonosulfate. J. Clean. Prod. 2022b, 352, 131563. https://doi.org/10.1016/j.jclepro.2022.131563.

Hussain, H. N.; Jilani, M. I.; Imtiaz, F.; Ahmed, T.; Arshad, M. B.; Mudassar, M.; Sharif, M. N. Advances in the Removal of Polyfluoroalkyl Substances (PFAS) from Water Using Destructive and Non-Destructive Methods. Green Anal. Chem. 2025, 6, 100225. https://doi.org/10.1016/j.greeac.2025.100225.

Ike, I. A.; Karanfil, T.; Cho, J.; Hur, J. Oxidation Byproducts from the Degradation of Dissolved Organic Matter by Advanced Oxidation Processes – A Critical Review. Water Res. 2019, 164, 114929. https://doi.org/10.1016/j.watres.2019.114929.

Ikehata, K.; Wang-Staley, L.; Qu, X.; Li, Y. Treatment of Groundwater Contaminated with 1,4-Dioxane, Tetrahydrofuran, and Chlorinated Volatile Organic Compounds Using Advanced Oxidation Processes. Ozone: Sci. Eng. 2016, 38 (6), 413–424. https://doi.org/10.1080/01919512.2016.1198686.

Imbrogno, A.; Biscarat, J.; Schafer, A. I. Estradiol Uptake in a Combined Magnetic Ion Exchange–Ultrafiltration (MIEX-UF) Process During Water Treatment. Curr. Pharm. Des. 2017, 23 (2), 328–337. https://doi.org/10.2174/1381612822666161021142412.

Ipek, I.; Kabay, N.; Yüksel, M. Separation of Bisphenol A and Phenol from Water by Polymer Adsorbents: Equilibrium and Kinetics Studies. J. Water Process Eng. 2017, 16, 206–211. https://doi.org/10.1016/j.jwpe.2017.01.006.

Jie, Y.; Jie, Z.; Ya, L.; Xuesong, Y.; Jing, Y.; Yu, Y.; Jiaqi, Y.; Jie, X. Pollution by Nonylphenol in River, Tap Water, and Aquatic Life in an Acid Rain-Plagued City in Southwest China. Int. J. Environ. Health Res. 2017, 27 (3), 179–190. https://doi.org/10.1080/09603123.2017.1332345.

Kim, K.-H.; Kabir, E.; Jahan, S. A. Exposure to Pesticides and the Associated Human Health Effects. Sci. Total Environ. 2017, 575, 525–535. https://doi.org/10.1016/j.scitotenv.2016.09.009.

Kouakou, Y. S.; Zhang, C. X.; Wang, Y. X.; Liao, X. P.; Le Li, J. Experimental Degradation of Nonylphenol (Endocrine Disruptor) by Using Ultraviolet Irradiation in the Presence of Hydrogen Peroxide. Water Environ. Res. 2014, 86 (8), 759–767. https://doi.org/10.2175/106143014X13896437493517.

Kowalska, I. Nanofiltration: Ion Exchange System for Effective Surfactant Removal from Water Solutions. Braz. J. Chem. Eng. 2014, 31 (4), 887–894. https://doi.org/10.1590/0104-6632.20140314s00003087.

Lei, K.; Lin, C.-Y.; Zhu, Y.; Chen, W.; Pan, H.-Y.; Sun, Z.; Sweetman, A.; Zhang, Q.; He, M.-C. Estrogens in Municipal Wastewater and Receiving Waters in the Beijing-Tianjin-Hebei Region, China: Occurrence and Risk Assessment of Mixtures. J. Hazard. Mater. 2020, 389, 121891. https://doi.org/10.1016/j.jhazmat.2019.121891.

Li, X.; Shen, X.; Jiang, W.; Xi, Y.; Li, S. Comprehensive Review of Emerging Contaminants: Detection Technologies, Environmental Impact, and Management Strategies. Ecotoxicol. Environ. Saf. 2024, 278, 116420. https://doi.org/10.1016/j.ecoenv.2024.116420.

Liang, J.; Li, C.; Dang, Y.; Feng, X.; Ji, X.; Liu, X.; Zhao, X.; Zhang, Q.; Ren, Z.; Wang, Y.; Li, Y.; Qu, G.; Liu, R. Occurrence of Bisphenol A Analogues in the Aquatic Environment and Their Behaviors and Toxicity Effects in Plants. Environ. Int. 2024, 193, 109105. https://doi.org/10.1016/j.envint.2024.109105.

Liu, Z.; Wardenier, N.; Hosseinzadeh, S.; Verheust, Y.; De Buyck, P.-J.; Chys, M.; Nikiforov, A.; Leys, C.; Van Hulle, S. Degradation of Bisphenol A by Combining Ozone with UV and H₂O₂ in Aqueous Solutions: Mechanism and Optimization. Clean Technol. Environ. Policy 2018, 20 (9), 2109–2118. https://doi.org/10.1007/s10098-018-1595-2.

López-Ortiz, C. M.; Sentana-Gadea, I.; Varó-Galván, P. J.; Maestre-Pérez, S. E.; Prats-Rico, D. Effect of Magnetic Ion Exchange (MIEX®) on Removal of Emerging Organic Contaminants. Chemosphere 2018, 208, 433–440. https://doi.org/10.1016/j.chemosphere.2018.05.194.

Ma, Y.; Liu, H.; Wu, J.; Yuan, L.; Wang, Y.; Du, X.; Wang, R.; Marwa, P. W.; Petlulu, P.; Chen, X.; Zhang, H. The Adverse Health Effects of Bisphenol A and Related Toxicity Mechanisms. Environ. Res. 2019, 176, 108575. https://doi.org/10.1016/j.envres.2019.108575.

Maher, E. K.; O’Malley, K. N.; Heffron, J.; Huo, J.; Wang, Y.; Mayer, B. K.; McNamara, P. J. Removal of Estrogenic Compounds via Iron Electrocoagulation: Impact of Water Quality and Assessment of Removal Mechanisms. Environ. Sci.: Water Res. Technol. 2019, 5 (5), 956–966. https://doi.org/10.1039/c9ew00087a.

Martín-Lara, M. A.; Calero, M.; Ronda, A.; Iáñez-Rodríguez, I.; Escudero, C. Adsorptive Behavior of an Activated Carbon for Bisphenol A Removal in Single and Binary (Bisphenol A—Heavy Metal) Solutions. Water 2020, 12 (8), 2150. https://doi.org/10.3390/w12082150.

Matarazzo, A.; Nelson, N.; Gardner, P. Recommendation on 1,4-Dioxane Treatment Options for Drinking Water; New Jersey Drinking Water Quality Institute, Treatment Subcommittee, 2020. https://www.nj.gov/dep/watersupply/pdf/14-dioxane-pub-rev-treat-sub.pdf.

McCleaf, P.; Englund, S.; Östlund, A.; Lindegren, K.; Wiberg, K.; Ahrens, L. Removal Efficiency of Multiple Poly- and Perfluoroalkyl Substances (PFASs) in Drinking Water Using Granular Activated Carbon (GAC) and Anion Exchange (AE) Column Tests. Water Res. 2017, 120, 77–87. https://doi.org/10.1016/j.watres.2017.04.057.

Meegoda, J. N.; Bezerra de Souza, B.; Casarini, M. M.; Kewalramani, J. A. A Review of PFAS Destruction Technologies. Int. J. Environ. Res. Public Health 2022, 19 (24), 16397. https://doi.org/10.3390/ijerph192416397.

Ministry of Health of Ukraine. State Sanitary Norms and Rules “Hygienic Requirements for Drinking Water Intended for Human Consumption” (DSanPin 2.2.4-171-10); 2010 (in Ukrainian). https://zakon.rada.gov.ua/laws/show/z0452-10#Text.

Mohammad, S.; El-Refaey, A. Efficient Removal of Imidacloprid Pesticide by Two Eco-Friendly Activated Carbons. J. Water Land Dev. 2023, 59, 145–153. https://doi.org/10.24425/jwld.2023.145353.

Mohebbi, S.; Khatibi, A. D.; Balarak, D.; Khashij, M.; Bazrafshan, E.; Mehralian, M. Endocrine Disruptor (17β-Estradiol) Removal by Poly Pyrrole-Based Molecularly Imprinted Polymer: Kinetic, Isotherms and Thermodynamic Studies. Appl. Water Sci. 2025, 15 (2). https://doi.org/10.1007/s13201-025-02373-w.

National Center for Biotechnology Information. PubChem Compound Summary; 2025. https://pubchem.ncbi.nlm.nih.gov/compound.

Nazari, M. T.; Schnorr, C.; Rigueto, C. V. T.; Alessandretti, I.; Melara, F.; da Silva, N. F.; Crestani, L.; Ferrari, V.; Vieillard, J.; Dotto, G. L.; Silva, L. F. O.; Piccin, J. S. A Review of the Main Methods for Composite Adsorbents Characterization. Environ. Sci. Pollut. Res. 2022. https://doi.org/10.1007/s11356-022-23883-z.

Naushad, M.; ALothman, Z. A.; Khan, M. R.; ALQahtani, N. J.; ALSohaimi, I. H. Equilibrium, Kinetics and Thermodynamic Studies for the Removal of Organophosphorus Pesticide Using Amberlyst-15 Resin: Quantitative Analysis by Liquid Chromatography–Mass Spectrometry. J. Ind. Eng. Chem. 2014, 20 (6), 4393–4400. https://doi.org/10.1016/j.jiec.2014.02.006.

Nguyen, P.-D.; Le, T.-M.-T.; Vo, T.-K.-Q.; Nguyen, P.-T.; Vo, T.-D.-H.; Dang, B.-T.; Son, N.-T.; Nguyen, D. D.; Bui, X.-T. Submerged Membrane Filtration Process Coupled with Powdered Activated Carbon for Nonylphenol Ethoxylates Removal. Water Sci. Technol. 2021, 84 (7), 1793–1803. https://doi.org/10.2166/wst.2021.380.

Njoku, V. O.; Islam, M. A.; Asif, M.; Hameed, B. H. Preparation of Mesoporous Activated Carbon from Coconut Frond for the Adsorption of Carbofuran Insecticide. J. Anal. Appl. Pyrolysis 2014, 110, 172–180. https://doi.org/10.1016/j.jaap.2014.08.020.

Ottenbros, I.; van der Meer, R.; Knaap, A. G. A.; Kooijman, J.; van der Sluijs, J. Assessment of Exposure to Pesticide Mixtures in Five European Countries by a Harmonized Urinary Suspect Screening Approach. Int. J. Hyg. Environ. Health 2023, 248, 114105. https://doi.org/10.1016/j.ijheh.2022.114105.

Petrlik, J.; Jelinek, N.; Cernochova, M.; Skalsky, M. First Research of the Contamination of the Sediments from Kakhovka Reservoir. Clean Air for Ukraine, 2023. https://doi.org/10.13140/RG.2.2.29767.27042/1.

Piai, L.; Dykstra, J. E.; Adishakti, M. G.; Blokland, M.; Langenhoff, A. A. M.; van der Wal, A. Diffusion of Hydrophilic Organic Micropollutants in Granular Activated Carbon with Different Pore Sizes. Water Res. 2019, 162, 518–527. https://doi.org/10.1016/j.watres.2019.06.012.

Rahman, M. F.; Peldszus, S.; Anderson, W. B. Behaviour and Fate of Perfluoroalkyl and Polyfluoroalkyl Substances (PFASs) in Drinking Water Treatment: A Review. Water Res. 2014, 50, 318–340. https://doi.org/10.1016/j.watres.2013.10.045.

Richardson, S. Disinfection By-Products and Other Emerging Contaminants in Drinking Water. TrAC, Trends Anal. Chem. 2003, 22 (10), 666–684. https://doi.org/10.1016/s0165-9936(03)01003-3.

Rodríguez-Alegre, R.; Pérez Megías, L.; Sanchis, S.; Andecochea Saiz, C.; You, X. Nanofiltration & Reverse Osmosis Technical Assessment for Pesticides Removal. Discov. Environ. 2024, 2 (1). https://doi.org/10.1007/s44274-024-00075-9.

Ronka, S. Removal of Triazine-Based Herbicides on Specific Polymeric Sorbent: Batch Studies. Pure Appl. Chem. 2016, 88 (12), 1167–1177. https://doi.org/10.1515/pac-2016-0906.

Roque, M. I.; Gomes, J.; Reva, I.; Valente, A. J. M.; Simões, N. E.; Morais, P. V.; Durães, L.; Martins, R. C. An Opinion on the Removal of Disinfection Byproducts from Drinking Water. Water 2023, 15 (9), 1724. https://doi.org/10.3390/w15091724.

Saito, K.; Cao, X.; He, Y.; Xu, Y. Progress in the Molecular Understanding of Central Regulation of Body Weight by Estrogens. Obesity 2015, 23 (5), 919–926. https://doi.org/10.1002/oby.21099.

Singh, V.; Sable, H.; Vaishali. Bioremediation of Emerging Pollutants: A Sustainable Remediation Approach. In Emerging Contaminants; Elsevier, 2024; pp 335–361. https://doi.org/10.1016/b978-0-443-18985-2.00013-4.

Sochacki, M.; Michorczyk, P.; Vogt, O. Foam Fractionation as an Efficient Method for the Separation and Recovery of Surfactants and Surface-Inactive Agents: State of the Art. ACS Omega 2024. https://doi.org/10.1021/acsomega.4c08413.

Sokolovska, A.; Petrusha, Y. Study of Drinking Water Quality Based on Trihalomethane Content. Logos. The Art of Scientific Thought 2019, (8), 78–80 (in Ukrainian). https://doi.org/10.36074/2617-7064.08.017.

Staples, C.; van der Hoeven, N.; Clark, K.; Mihaich, E.; Woelz, J.; Hentges, S. Distributions of Concentrations of Bisphenol A in North American and European Surface Waters and Sediments Determined from 19 Years of Monitoring Data. Chemosphere 2018, 201, 448–458. https://doi.org/10.1016/j.chemosphere.2018.02.175.

State Administration for Market Regulation and Standardization Administration of the People’s Republic of China. GB 5749-2022 Standards for Drinking Water Quality; Standards Press of China: Beijing, 2022. https://std.samr.gov.cn/gb/search/gbDetailed?id=DAB6B92C0764FC96E05397BE0A0A5F84.

Stefanakis, A. I.; Becker, J. A. A Review of Emerging Contaminants in Water: Classification, Sources, and Potential Risks. In Impact of Water Pollution on Human Health and Environmental Sustainability; IGI Global Scientific Publishing, 2016; pp 55–80. https://doi.org/10.4018/978-1-7998-1210-4.ch008.

Stein, U.; Lukat, E.; van den Hoven, T.; van den Berg, G.; Szendrenyi, A. B.; Beerendonk, E.; van der Burg, B.; Bourgin, M.; Caris-Hofman, R.; Gross, T.; Hannappel, S.; Hebert, A.; Hernández, M.; de Jonge, H.; Kienle, C.; Gebhardt, J.; Kounina, A.; de la Loma Gonzalez, B.; McArdell, C. S.; Mutz, D.; van der Oost, R.; Pieron, M.; Remy, C.; Simon, E.; Sprenger, C.; Vilanova, E.; Wencki, K.; van der Zouwen, M.; Hugi, C.; Oberschelp, C.; Schriks, M.; Baken, K.; Schritt, H. Challenges and Technological Approaches for Tackling Emerging Contaminants in Drinking and Wastewater. Ecologic Institute, 2018. https://doi.org/10.5281/zenodo.2452190.

Sun, J.; Jiang, X.; Zhou, Y.; Fan, J.; Zeng, G. Microfiltration Membranes for the Removal of Bisphenol A from Aqueous Solution: Adsorption Behavior and Mechanism. Water 2022, 14 (15), 2306. https://doi.org/10.3390/w14152306.

Sun, M.; Lopez-Velandia, C.; Knappe, D. R. U. Determination of 1,4-Dioxane in the Cape Fear River Watershed by Heated Purge-and-Trap Preconcentration and Gas Chromatography–Mass Spectrometry. Environ. Sci. Technol. 2016, 50 (5), 2246–2254. https://doi.org/10.1021/acs.est.5b05875.

Sun, Q.; Zhu, G.; Wang, C.; Yang, Z.; Xue, Q. Removal Characteristics of Steroid Estrogen in the Mixed System through an Ozone-Based Advanced Oxidation Process. Water Air Soil Pollut. 2019, 230 (9). https://doi.org/10.1007/s11270-019-4275-x.

Tan, X.; Dewapriya, P.; Prasad, P.; Chang, Y.; Huang, X.; Wang, Y.; Gong, X.; Hopkins, T. E.; Fu, C.; Thomas, K. V.; Peng, H.; Whittaker, A. K.; Zhang, C. Efficient Removal of Perfluorinated Chemicals from Contaminated Water Sources Using Magnetic Fluorinated Polymer Sorbents. Angew. Chem. Int. Ed. 2022. https://doi.org/10.1002/anie.202213071.

Tao, H.; Fu, J.; Luo, Y.; Sun, K.; Lin, T.; Xu, H.; Ding, M. The Distribution and Fate of Pesticides in Full-Scale Drinking Water Treatment Plants. J. Water Process Eng. 2024, 64, 105659. https://doi.org/10.1016/j.jwpe.2024.105659.

The Department of Toxic Substances Control. Product-Chemical Profile for Laundry Detergents Containing Nonylphenol Ethoxylates; California Environmental Protection Agency, 2022. https://dtsc.ca.gov/wp-content/uploads/sites/31/2023/11/PROFIL1.pdf.

The Odessa Journal. A Two-Year Project to Monitor Water Quality Has Started in Ukraine Along the Polish-Ukrainian Border. The Odessa Journal, 2025. https://odessa-journal.com/a-two-year-project-to-monitor-water-quality-has-started-in-ukraine-along-the-polish-ukrainian-border.

U.S. Congress. Safe Drinking Water Act, Pub. L. No. 93-523, 88 Stat. 1660, 1974. https://www.govinfo.gov/app/details/STATUTE-88/STATUTE-88-Pg1660-2.

U.S. Environmental Protection Agency. Drinking Water Treatment Plant Residuals Management; EPA 820-R-11-003; U.S. Environmental Protection Agency: Washington, DC, 2011. https://www.epa.gov/eg/drinking-water-treatment-residuals-management.

U.S. Environmental Protection Agency. National Primary Drinking Water Regulations (40 CFR Part 141); U.S. Environmental Protection Agency: Washington, DC, 2024a. https://www.ecfr.gov/current/title-40/chapter-I/subchapter-D/part-141.

U.S. Environmental Protection Agency. Unreasonable Risk Determination for 1,4-Dioxane; U.S. Environmental Protection Agency: Washington, DC, 2024b. https://www.epa.gov/system/files/documents/2024-11/2.-1-4-dioxane-.-revised-risk-determination-.-public-release-.-hero-.-nov-2024.pdf.

Van Pham, T.; Mai Phuoc, V.; Van Nguyen, D.; Koyama, J. Treatment Efficiency of a Combination of Alternative Technologies in Removing Pollutants from Pesticide Containing Wastewater. Environ. Eng. Res. 2020. https://doi.org/10.4491/eer.2020.263.

Verkhovna Rada of Ukraine. On Drinking Water, Drinking Water Supply and Drainage; Law of Ukraine No. 2918-III, 2002 (in Ukrainian). https://zakon.rada.gov.ua/laws/show/2918-14#Text.

Vystavna, Y.; Frkova, Z.; Celle-Jeanton, H.; Diadin, D.; Huneau, F.; Steinmann, M.; Crini, N.; Loup, C. Priority Substances and Emerging Pollutants in Urban Rivers in Ukraine: Occurrence, Fluxes and Loading to Transboundary European Union Watersheds. Sci. Total Environ. 2018, 637–638, 1358–1362. https://doi.org/10.1016/j.scitotenv.2018.05.095.

Wang, C.; Yu, J.; Chen, Y.; Dong, Y.; Su, M.; Dong, H.; Wang, Z.; Zhang, D.; Yang, M. Co-Occurrence of Odor-Causing Dioxanes and Dioxolanes with Bis(2-Chloro-1-Methylethyl) Ether in Huangpu River Source Water and Fates in O₃-BAC Process. J. Hazard. Mater. 2022, 430, 128435. https://doi.org/10.1016/j.jhazmat.2022.128435.

Waterkeeper Alliance. PFAS Contamination of U.S. Surface Waters; 2022. https://waterkeeper.org/wp-content/uploads/2022/10/Waterkeeper-Alliance-PFAS-Report-FINAL-10.14.22.pdf.

Woodard, S.; Mohr, T.; Nickelsen, M. G. Synthetic Media: A Promising New Treatment Technology for 1,4-Dioxane. Remediat. J. 2014, 24 (4), 27–40. https://doi.org/10.1002/rem.21402.

Yang, L.; She, Q.; Wan, M. P.; Wang, R.; Chang, V. W. C.; Tang, C. Y. Removal of Haloacetic Acids from Swimming Pool Water by Reverse Osmosis and Nanofiltration. Water Res. 2017, 116, 116–125. https://doi.org/10.1016/j.watres.2017.03.025.

Yang, Z.; Sun, Y. X.; Shi, N.; Hu, H. Y. [In Chinese] Huan Jing Ke Xue. Huan Jing Ke Xue 2015, 36 (10), 3706–3714. https://www.hjkx.ac.cn/hjkx/ch/html/20151019.htm.

Yüksel, S.; Kabay, N.; Yüksel, M. Removal of Bisphenol A (BPA) from Water by Various Nanofiltration (NF) and Reverse Osmosis (RO) Membranes. J. Hazard. Mater. 2013, 263, 307–310. https://doi.org/10.1016/j.jhazmat.2013.05.020.

Zahoor, M. Removal of Pesticides from Water Using Granular Activated Carbon and Ultrafiltration Membrane—A Pilot Plant Study. J. Encapsul. Adsorpt. Sci. 2013, 3 (3), 71–76. https://doi.org/10.4236/jeas.2013.33009.

Zhang, Z.; Yan, X.; Jones, K. C.; Jiao, C.; Sun, C.; Liu, Y.; Zhu, Y.; Zhang, Q.; Zhai, L.; Shen, Z.; Chen, L. Pesticide Risk Constraints to Achieving Sustainable Development Goals in China Based on National Modeling. npj Clean Water 2022, 5 (1). https://doi.org/10.1038/s41545-022-00202-0.

Zhao, S.; Gong, Y.; Yang, S.; Chen, S.; Huang, D.; Yang, K.; Cheng, H. Health Risk Assessment of Heavy Metals and Disinfection By-Products in Drinking Water in Megacities in China: A Study Based on Age Groups and Monte Carlo Simulations. Ecotoxicol. Environ. Saf. 2023, 262, 115330. https://doi.org/10.1016/j.ecoenv.2023.115330.

Downloads

Published

2024-12-29

How to Cite

Burlakova, V., & Mitchenko, T. (2024). A COMPREHENSIVE REVIEW OF THE CURRENT STATE OF ORGANIC EMERGING CONTAMINANTS MANAGEMENT IN DRINKING WATER: REGULATORY LANDSCAPE, PROPERTIES, HEALTH IMPACTS, TREATMENT METHODS. WATER AND WATER PURIFICATION TECHNOLOGIES. SCIENTIFIC AND TECHNICAL NEWS, 40(3), 15–42. https://doi.org/10.20535/2218-930032024332073

Issue

Section

METHODS OF DRINKING WATER TREATMENT