POTENTIAL APPLICATIONS OF TIO2/NATURAL ZEOLITE COMPOSITES FOR DYE REMOVAL

Authors

DOI:

https://doi.org/10.20535/2218-930012024314044

Keywords:

acid activation, composite materials, dye photodegradation, natural zeolite, photocatalysis, TiO2 nanoparticles

Abstract

Water pollution by organic dyes is a critical environmental issue that requires innovative and effective solutions. Photocatalytic materials based on titanium dioxide (TiO2) can effectively degrade these pollutants; however, their use in suspension form has several drawbacks, such as the difficulty of separation and limited reusability. To overcome these limitations, the use of composites is promising, as they simplify the separation of TiO2 after the reaction. The aim of this study is to modify natural Ukrainian zeolite and its acid-activated form with TiO2 nanoparticles and to determine their photocatalytic activity towards anionic dyes. TiO2/zeolite composites were synthesized by depositing titanium (IV) oxide nanoparticles onto natural zeolite and its acid-activated form, followed by thermal treatment at 500 °C. Characterization of the composites showed that the acid-activated composite achieved a specific surface area of 173.8 m²/g compared to 34.5 m²/g for the natural composite. The photocatalytic activity of the composites was evaluated by the degradation of the anionic dye Congo Red (10 mg/L) under ultraviolet irradiation. The results showed that the acid-activated zeolite modified with TiO2 nanoparticles achieved a Congo Red degradation efficiency of 65.6% after 30 minutes of ultraviolet exposure, which is 12% higher compared to the natural zeolite modified with TiO2 under the same conditions. The adsorption efficiency for Congo Red was 33.8%. This indicates that the composite not only facilitates the photocatalytic degradation of the dye but also contributes to its adsorption, enhancing the overall removal efficiency. Thus, the use of inexpensive natural zeolite as a TiO2 carrier, especially in its acid-activated form, not only simplifies the subsequent separation of the photocatalyst from the purified water but also maintains the photocatalytic efficiency in degrading anionic dyes. The enhanced surface properties and structural characteristics of the acid-activated composite make it highly effective for practical applications. This makes such composites promising candidates for application in industrial wastewater treatment systems, where economic feasibility, operational simplicity, and environmental safety are primary criteria.

References

Feizpoor, S.; Habibi-Yangjeh, A. Ternary TiO2/Fe3O4/CoWO4 Nanocomposites: Novel Magnetic Visible-Light-Driven Photocatalysts with Substantially Enhanced Activity through p-n Heterojunction. J Colloid Interface Sci 2018, 524, 325–336. https://doi.org/10.1016/J.JCIS.2018.03.069.

Kim, S. R.; Ali, I.; Kim, J. O. Phenol Degradation Using an Anodized Graphene-Doped TiO2 Nanotube Composite under Visible Light. Appl Surf Sci 2019, 477, 71–78. https://doi.org/10.1016/J.APSUSC.2017.12.024.

Fu, C. C.; Juang, R. S.; Huq, M. M.; Hsieh, C. Te. Enhanced Adsorption and Photodegradation of Phenol in Aqueous Suspensions of Titania/Graphene Oxide Composite Catalysts. J Taiwan Inst Chem Eng 2016, 67, 338–345. https://doi.org/10.1016/J.JTICE.2016.07.043.

Tomar, R.; Abdala, A. A.; Chaudhary, R. G.; Singh, N. B. Photocatalytic Degradation of Dyes by Nanomaterials. Mater Today Proc 2020, 29, 967–973. https://doi.org/10.1016/J.MATPR.2020.04.144.

Rashad, M. M.; Ismail, A. A.; Osama, I.; Ibrahim, I. A.; Kandil, A. H. T. Photocatalytic Decomposition of Dyes Using ZnO Doped SnO2 Nanoparticles Prepared by Solvothermal Method. Arabian Journal of Chemistry 2014, 7 (1), 71–77. https://doi.org/10.1016/J.ARABJC.2013.08.016.

Lau, G. E.; Abdullah, C. A. C.; Ahmad, W. A. N. W.; Assaw, S.; Zheng, A. L. T. Eco-Friendly Photocatalysts for Degradation of Dyes. Catalysts 2020, Vol. 10, Page 1129 2020, 10 (10), 1129. https://doi.org/10.3390/CATAL10101129.

Assadi, H.; Armaghan, F.; Taheri, R. A. Photocatalytic Oxidation of Ketone Group Volatile Organic Compounds in an Intensified Fluidized Bed Reactor Using Nano-TiO2/UV Process: An Experimental and Modeling Study. Chemical Engineering and Processing - Process Intensification 2021, 161, 108312. https://doi.org/10.1016/J.CEP.2021.108312.

Ao, C. H.; Lee, S. C. Indoor Air Purification by Photocatalyst TiO2 Immobilized on an Activated Carbon Filter Installed in an Air Cleaner. Chem Eng Sci 2005, 60 (1), 103–109. https://doi.org/10.1016/J.CES.2004.01.073.

Li, J.; Chen, R.; Cui, W.; Dong, X.; Wang, H.; Kim, K. H.; Chu, Y.; Sheng, J.; Sun, Y.; Dong, F. Synergistic Photocatalytic Decomposition of a Volatile Organic Compound Mixture: High Efficiency, Reaction Mechanism, and Long-Term Stability. ACS Catal 2020, 10 (13), 7230–7239. https://doi.org/10.1021/ACSCATAL.0C00693/SUPPL_FILE/CS0C00693_SI_001.PDF.

Fernández-Ibáñez, P.; Polo-López, M. I.; Malato, S.; Wadhwa, S.; Hamilton, J. W. J.; Dunlop, P. S. M.; D’Sa, R.; Magee, E.; O’Shea, K.; Dionysiou, D. D.; Byrne, J. A. Solar Photocatalytic Disinfection of Water Using Titanium Dioxide Graphene Composites. Chemical Engineering Journal 2015, 261, 36–44. https://doi.org/10.1016/J.CEJ.2014.06.089.

Gisbertz, S.; Pieber, B. Heterogeneous Photocatalysis in Organic Synthesis. ChemPhotoChem 2020, 4 (7), 456–475. https://doi.org/10.1002/CPTC.202000014.

Franchi, D.; Amara, Z. Applications of Sensitized Semiconductors as Heterogeneous Visible-Light Photocatalysts in Organic Synthesis. ACS Sustain Chem Eng 2020, 8 (41), 15405–15429. https://doi.org/10.1021/ACSSUSCHEMENG.0C05179/ASSET/IMAGES/MEDIUM/SC0C05179_0048.GIF.

Dou, Q.; Wang, T.; Fang, L.; Zhai, H.; Cheng, B. Recent Development of Photoinduced Iron-Catalysis in Organic Synthesis. Chinese Journal of Organic Chemistry 2023, 43 (4), 1386. https://doi.org/10.6023/CJOC202209001.

Nishiyama, H.; Yamada, T.; Nakabayashi, M.; Maehara, Y.; Yamaguchi, M.; Kuromiya, Y.; Nagatsuma, Y.; Tokudome, H.; Akiyama, S.; Watanabe, T.; Narushima, R.; Okunaka, S.; Shibata, N.; Takata, T.; Hisatomi, T.; Domen, K. Photocatalytic Solar Hydrogen Production from Water on a 100-M2 Scale. Nature 2021 598:7880 2021, 598 (7880), 304–307. https://doi.org/10.1038/s41586-021-03907-3.

Enyashin, A. N.; Seifert, G. Structure, Stability and Electronic Properties of TiO2 Nanostructures. physica status solidi (b) 2005, 242 (7), 1361–1370. https://doi.org/10.1002/PSSB.200540026.

Wold, A. Photocatalytic Properties of TiO2. Chemistry of Materials 1993, 5 (3), 280–283. https://doi.org/10.1021/CM00027A008/ASSET/CM00027A008.FP.PNG_V03.

Rashid, M. M.; Simončič, B.; Tomšič, B. Recent Advances in TiO2 Functionalized Textile Surfaces. Surfaces and Interfaces 2021, 22, 100890. https://doi.org/10.1016/J.SURFIN.2020.100890.

Bellardita, M.; Addamo, M.; Di Paola, A.; Marcì, G.; Palmisano, L.; Cassar, L.; Borsa, M. Photocatalytic Activity of TiO2/SiO2 Systems. J Hazard Mater 2010, 174 (1–3), 707–713. https://doi.org/10.1016/J.JHAZMAT.2009.09.108.

Arai, Y.; Tanaka, K.; Khlaifat, A. L. Photocatalysis of SiO2-Loaded TiO2. J Mol Catal A Chem 2006, 243 (1), 85–88. https://doi.org/10.1016/J.MOLCATA.2005.08.016.

Diban, N.; Pacuła, A.; Kumakiri, I.; Barquín, C.; Rivero, M. J.; Urtiaga, A.; Ortiz, I. TiO2–Zeolite Metal Composites for Photocatalytic Degradation of Organic Pollutants in Water. Catalysts 2021, 11 (11), 1367. https://doi.org/10.3390/CATAL11111367/S1.

Mahmoodi, N. M.; Arami, M.; Zhang, J. Preparation and Photocatalytic Activity of Immobilized Composite Photocatalyst (Titania Nanoparticle/Activated Carbon). J Alloys Compd 2011, 509 (14), 4754–4764. https://doi.org/10.1016/J.JALLCOM.2011.01.146.

Mishra, A.; Mehta, A.; Kainth, S.; Basu, S. Effect of Different Plasmonic Metals on Photocatalytic Degradation of Volatile Organic Compounds (VOCs) by Bentonite/M-TiO2 Nanocomposites under UV/Visible Light. Appl Clay Sci 2018, 153, 144–153. https://doi.org/10.1016/J.CLAY.2017.11.040.

Sun, Z.; Chen, Y.; Ke, Q.; Yang, Y.; Yuan, J. Photocatalytic Degradation of a Cationic Azo Dye by TiO2/Bentonite Nanocomposite. J Photochem Photobiol A Chem 2002, 149 (1–3), 169–174. https://doi.org/10.1016/S1010-6030(01)00649-9.

Yang, Y.; Xu, L.; Wang, H.; Wang, W.; Zhang, L. TiO2/Graphene Porous Composite and Its Photocatalytic Degradation of Methylene Blue. Mater Des 2016, 108, 632–639. https://doi.org/10.1016/J.MATDES.2016.06.104.

Yasumori, A.; Yanagida, S.; Sawada, J. Preparation of a Titania/X-Zeolite/Porous Glass Composite Photocatalyst Using Hydrothermal and Drop Coating Processes. Molecules 2015, Vol. 20, Pages 2349-2363 2015, 20 (2), 2349–2363. https://doi.org/10.3390/MOLECULES20022349.

Wardhani, S.; Farid Rahman, Moh. F.; Purwonugroho, D.; Triandi Tjahjanto, R.; Adi Damayanti, C.; Oktavia Wulandari, I. Photocatalytic Degradation of Methylene Blue Using TiO2-Natural Zeolite as A Photocatalyst. The Journal of Pure and Applied Chemistry Research 2016, 5 (1), 19–27. https://doi.org/10.21776/ub.jpacr.2016.005.01.232.

Mahalakshmi, M.; Vishnu Priya, S.; Arabindoo, B.; Palanichamy, M.; Murugesan, V. Photocatalytic Degradation of Aqueous Propoxur Solution Using TiO2 and Hβ Zeolite-Supported TiO2. J Hazard Mater 2009, 161 (1), 336–343. https://doi.org/10.1016/J.JHAZMAT.2008.03.098.

Diban, N.; Pacuła, A.; Kumakiri, I.; Barquín, C.; Rivero, M. J.; Urtiaga, A.; Ortiz, I. TiO2–Zeolite Metal Composites for Photocatalytic Degradation of Organic Pollutants in Water. Catalysts 2021, 11 (11), 1367. https://doi.org/10.3390/CATAL11111367/S1.

Mahshid, S.; Askari, M.; Ghamsari, M. S. Synthesis of TiO2 Nanoparticles by Hydrolysis and Peptization of Titanium Isopropoxide Solution. J Mater Process Technol 2007, 189 (1–3), 296–300. https://doi.org/10.1016/J.JMATPROTEC.2007.01.040.

Yanushevska, O. I.; Dontsova, T. A.; Aleksyk, A. I.; Vlasenko, N. V.; Didenko, O. Z.; Nypadymka, A. S. Surface and Structural Properties of Clay Materials Based on Natural Saponite. Clays Clay Miner 2020, 68 (5), 465–475. https://doi.org/10.1007/S42860-020-00088-4.

Kurylenko, V.; Tolstopalova, N.; Obushenko, T.; Sanginova, O.; Dontsova, T. Fluoride ions removal efficiency of natural/activated zeolite and bentonite sorbents. Water and Water purification Technologies. Scientific and Technical News 2023, 36 (2), 27–39. https://doi.org/10.20535/2218-930022023300526.

Buraso, W.; Lachom, V.; Siriya, P.; Laokul, P. Synthesis of TiO2 Nanoparticles via a Simple Precipitation Method and Photocatalytic Performance. Mater. Res. Express 2018, 5 (11), 115003. https://doi.org/10.1088/2053-1591/aadbf0.

Downloads

Published

2024-06-24

Issue

Section

MATERIALS AND EQUIPMENT FOR WATER TREATMENT