ceramic membrane, low-cost membrane material, materials for ceramic membrane, membrane technology, selective layer, synthesis methods


This article briefly overviews the main types of raw materials used to synthesise ceramic membranes. Traditional materials such as aluminium oxide, silicon dioxide, titanium dioxide, zirconium dioxide, zeolites, and cost-effective materials like various clays and industrial waste are highlighted. Modern methods for producing high-performance ceramic membranes are discussed, including slip casting, tape casting, pressing, extrusion, solid state method etc. The general scheme for preparing a selective layer on a ceramic membrane using various methods for synthesising it is also examined. Furthermore, the cost of commercial ceramic membranes and influencing factors are analysed. Based on contemporary literature, ceramic membranes exhibit distinct advantages over polymer membranes with their potential for application under high temperature, high pressure, and aggressive environments. Additionally, their energy efficiency, compactness, and versatility make them a viable alternative for water purification, replacing more expensive methods like coagulation and adsorption. Ceramic membranes have become a competitive alternative to polymer membranes, showcasing unique material properties and excellent characteristics. Using cost-effective materials for ceramic membrane fabrication allows for utilisation in economically sensitive sectors. Such membranes demonstrate excellent mechanical properties and high permeability, while inexpensive materials can reduce costs. Current scientific research and developments focus on utilising various clays and waste materials to produce ceramic membranes, aiming to create new generations of ceramic membranes for environmentally friendly applications.


Abdullayev, A.; Bekheet, M.; Hanaor, D.; Gurlo, A. Materials and Applications for Low-Cost Ceramic Membranes. Membranes, 2019, 9, 105.

Ahmad, N.A.; Leo, C.P.; Ahmad, A.L. Superhydrophobic alumina membrane by steam impingement: Minimum resistance in microfiltration. Sep. Purif. Technol., 2013, 107, 187–194.

Ajiboye, T.; Sawunyama, L; Ravele, M.; Rasheed-Adeleke, A.; Seheri, N.; Onwudiwe, D.; Mhlanga, S. Synthesis approaches to ceramic membranes, their composites, and application in the removal of tetracycline from water. Env.Advan., 2023, 12, 100371.

Ali, M. B.; Hamdi, N.; Rodriguez, M.; Mahmoudi, K.; Srasra, E. Preparation and characterization of new ceramic membranes for ultrafiltration. Ceram. Int., 2018, 44, 2328–2335.

Aloulou, W.; Aloulou, H.; Khemakhem, M.; Duplay, J.; Daramola, M. O.; Amar, R. Synthesis and Characterization of Clay-Based Ultrafiltration Membranes Supported on Natural Zeolite for Removal of Heavy Metals from Wastewater. Environ. Technol. Innov., 2020, 18, 100794.

Amanmyrat, A.; Maged, F.B.; Dorian, A.H.; Gurlo, A. Materials and Applications for Low-Cost Ceramic Membranes. Membr., 2019, 9 (105),

Amin, Sh.; Abdallah, H.; Roushdy M.; El-Sherbiny. An Overview of Production and Development of Ceramic Membranes. Int. J. Appl. Eng. Res., 2016, 11 (12), 7708–7721.

Avirup, S.; Monal, D. Development and study of sandwiched layer ceramic membrane. Desal. and Wat. Treatm., 2019, 156, 229–237.

Bhadra, M.; Mitra S. Nanostructured membranes in analytical chemistry. TrAC, 2013, 45, 248–263.

Bhave, R.R. Inorganic Membranes: Synthesis, Characteristics, and Applications; Van Nostrand-Reinhold: New York, 1991, 480 р.

Bico, J.; Thiele, U.; Quéré, D. Wetting of textured surfaces. Colloids Surf. A Physicochem. Eng. Asp. 2002, 206, 41–46.

Biesheuvel, P. M.; Verweij, H. Design of ceramic membrane supports: permeability, tensile strength and stress. J. Membr. Sci., 1999, 156 (1), 141–152.

Boccaccini, A.; Zhitomirsky, I. Application of electrophoretic and electrolytic deposition techniques in ceramics processing. Curr Opin Solid State Mater Sci, 2002, 6 (3), 251–260.

Bouazizi, A.; Saja, S.; Achiou, B.; Ouammou, M.; Calvo, J. I.; Aaddane, A.; Younssi, S. A. Elaboration and characterization of a new flat ceramic MF membrane made from natural Moroccan bentonite. Application to treatment of industrial wastewater. Appl. Clay Sci., 2016, 132–133, 33–40.

Boudaira, B.; Harabi, A.; Bouzerara, F.; Zenikheri, F.; Foughali, L.; Guechi, A. Preparation and characterization of membrane supports for microfiltration and ultrafiltration using kaolin (DD2) and CaCO3. Desalin. Water Treat., 2016, 57, 5258–5265.

Buonomenna, M. G. Membrane processes for a sustainable industrial growth. RSC Adv., 2013, 3, 5694–5740.

Burggraaf, A. J.; Cot, L. Fundamentals of Inorganic Membrane Science and Technology; Elsevier: Amsterdam, 1996.

Chakraborty, S.; Uppaluri, R.; Das, C. Optimal fabrication of carbonate free kaolin based low cost ceramic membranes using mixture model response surface methodology. Appl. Clay Sci., 2018, 162, 101–112, clay.2018.06.002

Chen, G.; Ge, X.; Wang, Y.; Xing, W.; Guo, Y. Design and preparation of high permeability porous mullite support for membranes by in-situ reaction. Ceram. Int., 2015, 41, 8282–8287.

Chen, L. et al. Preparation and mechanism analysis of high performance ceramic membrane by spray coating. RSC Adv., 2018, 8, 39884–39892.

Chen, M.; Heijman, S. G. J.; Rietveld, L. C. State-of-the-Art Ceramic Membranes for Oily Wastewater Treatment: Modification and Application. Membranes, 2021, 11, 888.

Chihi, R.; Blidi, I.; Trabelsi-Ayadi, M.; Ayari, F.. Elaboration and characterization of a low-cost porous ceramic support from natural Tunisian bentonite clay. Compt. Rendus Chem., 2019, 22 (2–3) 188–197. crci.2018.12.002

Choi, N.-C.; Cho, K.-H.; Kim, M.-S.; Park, S.-J.; Lee, C.-G. A Hybrid Ion-Exchange Fabric/Ceramic Membrane System to Remove As(V), Zn(II), and Turbidity from Wastewater. Appl. Sci., 2020, 10, 2414.

DeFriend, K. A.; Wiesner, M. R.; Barron, A. R. Alumina and aluminate ultrafiltration membranes derived from alumina nanoparticles. J. Membr. Sci., 2003, 224, 11–28.

Dong, Y.; Chen, S.; Zhang, X.; Yang, J.; Liu, X.; Meng, G. Fabrication and characterization of low cost tubular mineral-based ceramic membranes for micro-filtration from natural zeolite. J. Membr. Sci., 2006, 281, 592–599.

Dontsova, T. A et al. Enhanced Photocatalytic Activity of TiO2/SnO2 Binary Nanocomposites. J. Nanomater., 2020, 2020, 1-13.

Dommati, H.; Ray, S.; Wang, J.-C.; Chen S.-S. A comprehensive review of recent developments in 3D printing technique for ceramic membrane fabrication for water purification. RSC Adv., 2019, 9, 16869–16883.

Elaine Fung, Y. L.; Wang, H. Investigation of reinforcement of porous alumina by nickel aluminate spinel for its use as ceramic membrane. J. Membr. Sci., 2013, 444, 252–258.

Eom, J.-H.; Yeom, H.-J.; Kim, Y.-W.; Song, I.-H. Ceramic Membranes Prepared from a Silicate and Clay-mineral Mixture for Treatment of Oily Wastewater. Clays Clay Miner., 2015, 63, 222–234.

Erdem, I. Sol-gel applications for ceramic membrane preparation. AIP Conference Proceedings, 2017, 1809, 020011.

Fang, J. Qin, Q.; Wei, W.; Zhao X.; Jiang L. Elaboration of new ceramic membrane from spherical fly ash for microfiltration of rigid particle suspension and oil-in-water emulsion. Desalin., 2013, 311, 113–126.

Foorginezhad, S.; Zerafat, M. M. Microfiltration of cationic dyes using nano-clay membranes. Ceram. Int., 2017, 43, 15146–15159.

Galán-Arboledas, R. J.; Cotes, T.; Martínez, C.; Bueno, S. Influence of waste addition on the porosity of clay-based ceramic membranes. Desalin. Water Treat., 2016, 57, 2633–2639.

Gitis V.; Rothenberg G. Ceramic Membranes: New Opportunities and Practical Applications; John Wiley & Sons Inc.: Hoboken, 2016, 395 p.

Hamden, M.; Bouaziz, J. Preparation and characterization of tubular cermet membrane for microfiltration separation: application to the treatment of textile wastewater. Comptes Rendus. Chimie, 2021, 24 (1), 135–146.

Harabi, A.; Zenikheri, F.; Boudaira, B.; Bouzerara, F.; Guechi, A.; Foughali, L. A new and economic approach to fabricate resistant porous membrane supports using kaolin and CaCO3. J. Eur. Ceram. Soc., 2014, 34, 1329–1340.

Hedfi, I.; Hamdi, N.; Srasra, E.; Rodríguez, M. A. The preparation of micro-porous membrane from a Tunisian kaolin. Appl. Clay Sci., 2014, 101, 574–578.

Herregods, S. J. F., Wyns, K., Buekenhoudt, A.; Meynen, V. The Use of Different Templates for the Synthesis of Reproducible Mesoporous Titania Thin Films and Small Pore Ultrafiltration Membranes. Adv. Eng. Mater., 2019, 21, 1900603.

Hu, Z.; Y. Yang, Q. Chang, F. Liu, Y. Wang, J. Rao, Preparation of a high- performance porous ceramic membrane by a two-step coating method and one-step sintering, Appl. Sci., 2018, 9 (1).

Hubadillah, S. K.; Othman, M. H. D.; Ismail, A. F.; Rahman, M. A.; Jaafar, J. A low cost hydrophobic kaolin hollow fiber membrane (h-KHFM) for arsenic removal from aqueous solution via direct contact membrane distillation. Sep. Purif. Technol., 2019, 214, 31–39.

Hung, W.-S. et al. Pressure-assisted self-assembly technique for fabricating composite membranes consisting of highly ordered selective laminate layers of amphiphilic graphene oxide. Carbon, 2014, 68, 670–677.

Isobe, T.; Kameshima, Y.; Nakajima, A.; Okada, K.; Hotta Y. Extrusion method using nylon 66 fibers for the preparation of porous alumina ceramics with oriented pores. J. Europ. Ceram. Soc., 2006, 26 (12), 2213–2217.

Issaoui, M.; Limousy, L. Low-cost ceramic membranes: Synthesis, classifications, and applications. C. R. Chimie, 2019, 22, 175–187.

Jana, S.; Purkait, M. K.; Mohanty, K. Preparation and characterization of low-cost ceramic microfiltration membranes for the removal of chromate from aqueous solutions. Appl. Clay Sci., 2010, 47, 317–324.

Jedidi, S.; Saïdi, S.; Khemakhem, A.; Larbot, N.; Elloumi-Ammar, A.; Fourati, A.; Charfi, A. et al. Elaboration of new ceramic microfiltration membranes from mineral coal fly ash applied to waste water treatment. J. Hazard. Mater., 2011, 172, 152–158.

Kagramanov, G. G.; Nazarov, V. V. Ceramic Membranes with Selective Layers Based on SiO2, TiO2, and ZrO2. Glass and Ceramics, 2001, 58, 166–168.

Kelkar, S.; Wolden, C. Evaluation of Vapor Deposition Techniques for Membrane Pore Size Modification. J. Membr.Sci. and Res., 2017, 3, 64–70.

Khemakhem, S.; Larbot, A.; Amar, R. B. Study of performances of ceramic microfiltration membrane from Tunisian clay applied to cuttlefish effluents treatment. Desalin., 2006, 200, 307–309.

Kucera, J. Membrane materials and module development: historical perspective, Encyclopedia of Membrane Science and Technology; John Wiley & Sons Inc.: Hoboken, 2013.

Kujawa, J.; Cerneaux, S.; Kujawski, W.; Knozowska, K. Hydrophobic Ceramic Membranes for Water Desalination. Appl. Sci., 2017, 7, 402.

Kumar, V.; Monash, P.; Pugazhenthi, G. Treatment of oil-in-water emulsion using tubular ceramic membrane acquired from locally available low-cost inorganic precursors, Desalin. Water Treat., 2016, 57 (58), 28056–28070.

Lai, Z. P.; Bonilla, G.; Diaz, I.; Nery, J. G.; Sujaoti, K.; Amat, M. A. et al. Microstructural optimization of a zeolite membrane for organic vapor separation. Sci., 2003, 300 (5618), 456–460.

Liang, D.; Huang J.; Zhang Y. et al. Influence of dextrin content and sintering temperature on the properties of coal fly ash-based tubular ceramic membrane for flue gas moisture recovery. J. Eur. Ceram. Soc., 2021, 41, (11), 56965710.

Lin, Y.; Zou, D.; Chen X. et al. Low temperature sintering preparation of high- permeability TiO2/Ti composite membrane via facile coating method. Appl. Surf. Sci., 2015, 349, 8–16.

Liu J.; Dong, Y.; Dong, X.; S. et al. Feasible recycling of industrial waste coal fly ash for preparation of anorthite-cordierite based porous ceramic membrane supports with addition of dolomite. J. Eur. Ceram. Soc., 2016, 36, 1059–1071.

Liu, Y. et al. Alcohols assisted in-situ growth of MoS2 membrane on tubular ceramic substrate for nanofiltration. J. Membr. Sci., 2022, 659, 120777.

Lorente-Ayza, M.-M.; Mestre, S.; Menéndez, M.; Sánchez, E. Comparison of extruded and pressed low cost ceramic supports for microfiltration membranes. J. Eur. Ceram. Soc. 2015, 35, 3681–3691.

Mavukkandy, M. et al. Thin film deposition techniques for polymeric membranes– A review. J. Membr. Sci., 2020, 610, 118258.

Medvedkova, N. G., Nazarov, V. V. Sol-gel preparation of selective layers of ceramic ultrafiltration membranes based on titania. Glass. Ceram., 1999, 53, 117–119.

Moattari R., Mohammadi T. Chapter 5 - Nanostructured membranes for water treatments, In Micro and Nano Technologies, Nanotechnology in the Beverage Industry, Elsevier, 2020, 129–150.

Nair, P., Mizukami, F., Okubo, T., Nair, J., Keizer, K.; Burggraaf, A. J. High-temperature catalyst supports and ceramics membranes: metastability and particle packing. AIChE J., 1997, 43 (11), 2710–2714.

Nandi, B. K., Uppaluri, R., Purkait, M. K. Preparation and characterization of low cost ceramic membranes for micro-filtration applications. Appl. Clay Sci., 2008, 42, 102–110.

Sabzi, M.; Mousavi Anijdan, S. H.; Shamsodin, M.; Farzam, M.; Hojjati-Najafabadi, A.; Feng, P.; Park, N.; Lee, U. A Review on Sustainable Manufacturing of Ceramic-Based Thin Films by Chemical Vapor Deposition (CVD): Reactions Kinetics and the Deposition Mechanisms. Coatings 2023, 13, 188.

Saffaj, N.; Persin, M.; Younsi, S. A.; Albizane, A.; Cretin, M.; Larbot, A. Elaboration and characterization of microfiltration and ultrafiltration membranes deposited on raw support prepared from natural Moroccan clay: Application to filtration of solution containing dyes and salts. Appl. Clay Sci., 2006, 31, 110–119.

Sah, A., Castricum, H.L., Bliek, A., Blank, D., Elshof, J. E. Hydrophobic modification of gamma- alumina membranes with organochlorosilanes. J. Membr. Sci., 2004, 243 (1–2), 125–132.

Schafföner, S.; Freitag, L.; Hubálková, J., Aneziris, C. Functional composites based on refractories produced by pressure slip casting, J. Eur. Cer. Societ., 2016, 36 (8), 2109–2117.

Schiffer, S. et al. Effects of selective layer properties of ceramic multi-channel microfiltration membranes on the milk protein fractionation. Sep. Purif. Technol., 2021, 259, 118050.

Serhiienko, A.; Dontsova, T.; Yanushevska, O.; Vorobyova, V.; Vasyliev, G. Characterization of ceramic membrane support based on Ukrainian kaolin, Molec. Cryst. Liq. Cryst., 2023, 752 (1), 128–141.

Serhiienko, A. O., Dontsova, T. A., Yanushevska, O. I., Nahirniak, S. V., Ahmad, H.-B. Ceramic membranes: New trends and prospects (short review). Wat. and Wat. Purif. Tech.. Scientif. and technic. news, 2020, 27 (2), 4–31.

Sun, L.; Wang, Z.; Gao, B. Ceramic membranes originated from cost-effective and abundant natural minerals and industrial wastes for broad applications – a review. Desal. and Wat.Treat., 2020, 201, 121–138.

Tomina, V; Nazarchuk, G.; Melnyk, I. Modification of Ceramic Membranes by Silica Nanoparticles with Thiourea Functions, J. Nanomater., 2019, 2019, 2534934. .

Xu, R., Wang, J.H., Kanezashi, M., Yoshioka, T. and Tsuru, T. Reverse osmosis performance of organosilica membranes and comparison with the pervaporation and gas permeation properties. AIChE J., 2013, 59 (4), 1298–1307.

Yoshino, Y., Suzuki, T., Nair, B., Taguchi, H., Itoh, N. Development of tubular substrates, silica based membranes and membrane modules for hydrogen separation at high temperature. J. Membr. Sci., 2005, 267, 8–17.

Zhao, S. et al. The Future of Layer-by-Layer Assembly: A Tribute to ACS Nano Associate Editor Helmuth. CS Nano, 2019, 13 (6), 6151–6169.

Zhou, J.-E.; Dong, Y.; Hampshire, S.; Meng, G. Utilization of sepiolite in the synthesis of porous cordierite ceramics. Appl. Clay Sci., 2011, 52, 328–332.

Zhou, J.; Zhang, X.; Wang, Y.; Larbot, A.; Hu, X. Elaboration and characterization of tubular microporous ceramic support for membranes from kaolin and dolomite. J. Porous Mater., 2010, 17, 1–9.

Zou, D.; Mao, H.; Zhong, Z. Construction strategies of self-cleaning ceramic composite membranes for water treatment. Ceram. Internat., 2022, 48 (6), 7362–7373.