MATERIALS AND METHODS FOR CERAMIC MEMBRANE SYNTHESIS. SHORT REVIEW
DOI:
https://doi.org/10.20535/2218-930012023281034Keywords:
ceramic membrane, low-cost membrane material, materials for ceramic membrane, membrane technology, selective layer, synthesis methodsAbstract
This article briefly overviews the main types of raw materials used to synthesise ceramic membranes. Traditional materials such as aluminium oxide, silicon dioxide, titanium dioxide, zirconium dioxide, zeolites, and cost-effective materials like various clays and industrial waste are highlighted. Modern methods for producing high-performance ceramic membranes are discussed, including slip casting, tape casting, pressing, extrusion, solid state method etc. The general scheme for preparing a selective layer on a ceramic membrane using various methods for synthesising it is also examined. Furthermore, the cost of commercial ceramic membranes and influencing factors are analysed. Based on contemporary literature, ceramic membranes exhibit distinct advantages over polymer membranes with their potential for application under high temperature, high pressure, and aggressive environments. Additionally, their energy efficiency, compactness, and versatility make them a viable alternative for water purification, replacing more expensive methods like coagulation and adsorption. Ceramic membranes have become a competitive alternative to polymer membranes, showcasing unique material properties and excellent characteristics. Using cost-effective materials for ceramic membrane fabrication allows for utilisation in economically sensitive sectors. Such membranes demonstrate excellent mechanical properties and high permeability, while inexpensive materials can reduce costs. Current scientific research and developments focus on utilising various clays and waste materials to produce ceramic membranes, aiming to create new generations of ceramic membranes for environmentally friendly applications.
References
Abdullayev, A.; Bekheet, M.; Hanaor, D.; Gurlo, A. Materials and Applications for Low-Cost Ceramic Membranes. Membranes, 2019, 9, 105. https://doi.org/10.3390/membranes9090105
Ahmad, N.A.; Leo, C.P.; Ahmad, A.L. Superhydrophobic alumina membrane by steam impingement: Minimum resistance in microfiltration. Sep. Purif. Technol., 2013, 107, 187–194. https://doi.org/10.1016/j.seppur.2013.01.011
Ajiboye, T.; Sawunyama, L; Ravele, M.; Rasheed-Adeleke, A.; Seheri, N.; Onwudiwe, D.; Mhlanga, S. Synthesis approaches to ceramic membranes, their composites, and application in the removal of tetracycline from water. Env.Advan., 2023, 12, 100371. https://doi.org/10.1016/j.envadv.2023.100371.
Ali, M. B.; Hamdi, N.; Rodriguez, M.; Mahmoudi, K.; Srasra, E. Preparation and characterization of new ceramic membranes for ultrafiltration. Ceram. Int., 2018, 44, 2328–2335. https://doi.org/10.1016/j.bsecv.2019.06.001
Aloulou, W.; Aloulou, H.; Khemakhem, M.; Duplay, J.; Daramola, M. O.; Amar, R. Synthesis and Characterization of Clay-Based Ultrafiltration Membranes Supported on Natural Zeolite for Removal of Heavy Metals from Wastewater. Environ. Technol. Innov., 2020, 18, 100794. https://doi.org/10.1016/j.eti.2020.100794
Amanmyrat, A.; Maged, F.B.; Dorian, A.H.; Gurlo, A. Materials and Applications for Low-Cost Ceramic Membranes. Membr., 2019, 9 (105), https://doi.org/10.3390/membranes9090105
Amin, Sh.; Abdallah, H.; Roushdy M.; El-Sherbiny. An Overview of Production and Development of Ceramic Membranes. Int. J. Appl. Eng. Res., 2016, 11 (12), 7708–7721.
Avirup, S.; Monal, D. Development and study of sandwiched layer ceramic membrane. Desal. and Wat. Treatm., 2019, 156, 229–237. https://doi.org/10.5004/dwt.2019.23786
Bhadra, M.; Mitra S. Nanostructured membranes in analytical chemistry. TrAC, 2013, 45, 248–263. https://doi.org/10.1016/j.trac.2012.12.010
Bhave, R.R. Inorganic Membranes: Synthesis, Characteristics, and Applications; Van Nostrand-Reinhold: New York, 1991, 480 р.
Bico, J.; Thiele, U.; Quéré, D. Wetting of textured surfaces. Colloids Surf. A Physicochem. Eng. Asp. 2002, 206, 41–46. https://doi.org/10.1016/S0927-7757(02)00061-4
Biesheuvel, P. M.; Verweij, H. Design of ceramic membrane supports: permeability, tensile strength and stress. J. Membr. Sci., 1999, 156 (1), 141–152.
Boccaccini, A.; Zhitomirsky, I. Application of electrophoretic and electrolytic deposition techniques in ceramics processing. Curr Opin Solid State Mater Sci, 2002, 6 (3), 251–260.
Bouazizi, A.; Saja, S.; Achiou, B.; Ouammou, M.; Calvo, J. I.; Aaddane, A.; Younssi, S. A. Elaboration and characterization of a new flat ceramic MF membrane made from natural Moroccan bentonite. Application to treatment of industrial wastewater. Appl. Clay Sci., 2016, 132–133, 33–40. https://doi.org/10.1016/j.clay.2016.05.009
Boudaira, B.; Harabi, A.; Bouzerara, F.; Zenikheri, F.; Foughali, L.; Guechi, A. Preparation and characterization of membrane supports for microfiltration and ultrafiltration using kaolin (DD2) and CaCO3. Desalin. Water Treat., 2016, 57, 5258–5265. https://doi.org/10.1080/19443994.2015.1021998
Buonomenna, M. G. Membrane processes for a sustainable industrial growth. RSC Adv., 2013, 3, 5694–5740. https://doi.org/10.1039/C2RA22580H
Burggraaf, A. J.; Cot, L. Fundamentals of Inorganic Membrane Science and Technology; Elsevier: Amsterdam, 1996.
Chakraborty, S.; Uppaluri, R.; Das, C. Optimal fabrication of carbonate free kaolin based low cost ceramic membranes using mixture model response surface methodology. Appl. Clay Sci., 2018, 162, 101–112, https://doi.org/10.1016/j. clay.2018.06.002
Chen, G.; Ge, X.; Wang, Y.; Xing, W.; Guo, Y. Design and preparation of high permeability porous mullite support for membranes by in-situ reaction. Ceram. Int., 2015, 41, 8282–8287. https://doi.org/10.1016/j.ceramint.2015.02.045
Chen, L. et al. Preparation and mechanism analysis of high performance ceramic membrane by spray coating. RSC Adv., 2018, 8, 39884–39892. https://doi.org/10.1039/C8RA07258B
Chen, M.; Heijman, S. G. J.; Rietveld, L. C. State-of-the-Art Ceramic Membranes for Oily Wastewater Treatment: Modification and Application. Membranes, 2021, 11, 888. https://doi.org/10.3390/membranes11110888
Chihi, R.; Blidi, I.; Trabelsi-Ayadi, M.; Ayari, F.. Elaboration and characterization of a low-cost porous ceramic support from natural Tunisian bentonite clay. Compt. Rendus Chem., 2019, 22 (2–3) 188–197. https://doi.org/10.1016/j. crci.2018.12.002
Choi, N.-C.; Cho, K.-H.; Kim, M.-S.; Park, S.-J.; Lee, C.-G. A Hybrid Ion-Exchange Fabric/Ceramic Membrane System to Remove As(V), Zn(II), and Turbidity from Wastewater. Appl. Sci., 2020, 10, 2414. https://doi.org/10.3390/app10072414
DeFriend, K. A.; Wiesner, M. R.; Barron, A. R. Alumina and aluminate ultrafiltration membranes derived from alumina nanoparticles. J. Membr. Sci., 2003, 224, 11–28. https://doi.org/10.1016/S0376-7388(03)00344-2
Dong, Y.; Chen, S.; Zhang, X.; Yang, J.; Liu, X.; Meng, G. Fabrication and characterization of low cost tubular mineral-based ceramic membranes for micro-filtration from natural zeolite. J. Membr. Sci., 2006, 281, 592–599. https://doi.org/10.1016/j.memsci.2006.04.029
Dontsova, T. A et al. Enhanced Photocatalytic Activity of TiO2/SnO2 Binary Nanocomposites. J. Nanomater., 2020, 2020, 1-13. https://doi.org/10.1155/2020/8349480
Dommati, H.; Ray, S.; Wang, J.-C.; Chen S.-S. A comprehensive review of recent developments in 3D printing technique for ceramic membrane fabrication for water purification. RSC Adv., 2019, 9, 16869–16883. https://doi.org/10.1039/C9RA00872A
Elaine Fung, Y. L.; Wang, H. Investigation of reinforcement of porous alumina by nickel aluminate spinel for its use as ceramic membrane. J. Membr. Sci., 2013, 444, 252–258. https://doi.org/10.1016/j.memsci.2013.05.025
Eom, J.-H.; Yeom, H.-J.; Kim, Y.-W.; Song, I.-H. Ceramic Membranes Prepared from a Silicate and Clay-mineral Mixture for Treatment of Oily Wastewater. Clays Clay Miner., 2015, 63, 222–234. https://doi.org/10.1346/CCMN.2015.0630305
Erdem, I. Sol-gel applications for ceramic membrane preparation. AIP Conference Proceedings, 2017, 1809, 020011. https://doi.org/10.1063/1.4975426
Fang, J. Qin, Q.; Wei, W.; Zhao X.; Jiang L. Elaboration of new ceramic membrane from spherical fly ash for microfiltration of rigid particle suspension and oil-in-water emulsion. Desalin., 2013, 311, 113–126. https://doi.org/10.1016/j.desal.2012.11.008
Foorginezhad, S.; Zerafat, M. M. Microfiltration of cationic dyes using nano-clay membranes. Ceram. Int., 2017, 43, 15146–15159. https://doi.org/10.1016/j.ceramint.2017.08.045
Galán-Arboledas, R. J.; Cotes, T.; Martínez, C.; Bueno, S. Influence of waste addition on the porosity of clay-based ceramic membranes. Desalin. Water Treat., 2016, 57, 2633–2639. https://doi.org/10.3390/membranes9090105
Gitis V.; Rothenberg G. Ceramic Membranes: New Opportunities and Practical Applications; John Wiley & Sons Inc.: Hoboken, 2016, 395 p.
Hamden, M.; Bouaziz, J. Preparation and characterization of tubular cermet membrane for microfiltration separation: application to the treatment of textile wastewater. Comptes Rendus. Chimie, 2021, 24 (1), 135–146. https://doi.org/10.5802/crchim.69
Harabi, A.; Zenikheri, F.; Boudaira, B.; Bouzerara, F.; Guechi, A.; Foughali, L. A new and economic approach to fabricate resistant porous membrane supports using kaolin and CaCO3. J. Eur. Ceram. Soc., 2014, 34, 1329–1340. https://doi.org/10.1016/j.jeurceramsoc.2013.11.007
Hedfi, I.; Hamdi, N.; Srasra, E.; Rodríguez, M. A. The preparation of micro-porous membrane from a Tunisian kaolin. Appl. Clay Sci., 2014, 101, 574–578. https://doi.org/10.1016/j.clay.2014.09.021
Herregods, S. J. F., Wyns, K., Buekenhoudt, A.; Meynen, V. The Use of Different Templates for the Synthesis of Reproducible Mesoporous Titania Thin Films and Small Pore Ultrafiltration Membranes. Adv. Eng. Mater., 2019, 21, 1900603. https://doi.org/10.1002/adem.201900603
Hu, Z.; Y. Yang, Q. Chang, F. Liu, Y. Wang, J. Rao, Preparation of a high- performance porous ceramic membrane by a two-step coating method and one-step sintering, Appl. Sci., 2018, 9 (1). https://doi.org/10.3390/app9010052
Hubadillah, S. K.; Othman, M. H. D.; Ismail, A. F.; Rahman, M. A.; Jaafar, J. A low cost hydrophobic kaolin hollow fiber membrane (h-KHFM) for arsenic removal from aqueous solution via direct contact membrane distillation. Sep. Purif. Technol., 2019, 214, 31–39. https://doi.org/10.1016/j.seppur.2018.04.025
Hung, W.-S. et al. Pressure-assisted self-assembly technique for fabricating composite membranes consisting of highly ordered selective laminate layers of amphiphilic graphene oxide. Carbon, 2014, 68, 670–677. https://doi.org/10.1016/j.carbon.2013.11.048
Isobe, T.; Kameshima, Y.; Nakajima, A.; Okada, K.; Hotta Y. Extrusion method using nylon 66 fibers for the preparation of porous alumina ceramics with oriented pores. J. Europ. Ceram. Soc., 2006, 26 (12), 2213–2217.
Issaoui, M.; Limousy, L. Low-cost ceramic membranes: Synthesis, classifications, and applications. C. R. Chimie, 2019, 22, 175–187. https://doi.org/10.1016/j.crci.2018.09.014
Jana, S.; Purkait, M. K.; Mohanty, K. Preparation and characterization of low-cost ceramic microfiltration membranes for the removal of chromate from aqueous solutions. Appl. Clay Sci., 2010, 47, 317–324. https://doi.org/10.1016/j.clay.2009.11.036
Jedidi, S.; Saïdi, S.; Khemakhem, A.; Larbot, N.; Elloumi-Ammar, A.; Fourati, A.; Charfi, A. et al. Elaboration of new ceramic microfiltration membranes from mineral coal fly ash applied to waste water treatment. J. Hazard. Mater., 2011, 172, 152–158. https://doi.org/10.1016/j.jhazmat.2009.06.151
Kagramanov, G. G.; Nazarov, V. V. Ceramic Membranes with Selective Layers Based on SiO2, TiO2, and ZrO2. Glass and Ceramics, 2001, 58, 166–168. https://doi.org/10.1023/A:1012366309705
Kelkar, S.; Wolden, C. Evaluation of Vapor Deposition Techniques for Membrane Pore Size Modification. J. Membr.Sci. and Res., 2017, 3, 64–70. http://dx.doi.org/10.22079/jmsr.2016.20345
Khemakhem, S.; Larbot, A.; Amar, R. B. Study of performances of ceramic microfiltration membrane from Tunisian clay applied to cuttlefish effluents treatment. Desalin., 2006, 200, 307–309.
Kucera, J. Membrane materials and module development: historical perspective, Encyclopedia of Membrane Science and Technology; John Wiley & Sons Inc.: Hoboken, 2013. https://doi.org/10.1002/9781118522318.emst033
Kujawa, J.; Cerneaux, S.; Kujawski, W.; Knozowska, K. Hydrophobic Ceramic Membranes for Water Desalination. Appl. Sci., 2017, 7, 402. https://doi.org/10.3390/app7040402
Kumar, V.; Monash, P.; Pugazhenthi, G. Treatment of oil-in-water emulsion using tubular ceramic membrane acquired from locally available low-cost inorganic precursors, Desalin. Water Treat., 2016, 57 (58), 28056–28070. https://doi.org/10.1080/19443994.2016.1179221
Lai, Z. P.; Bonilla, G.; Diaz, I.; Nery, J. G.; Sujaoti, K.; Amat, M. A. et al. Microstructural optimization of a zeolite membrane for organic vapor separation. Sci., 2003, 300 (5618), 456–460.
Liang, D.; Huang J.; Zhang Y. et al. Influence of dextrin content and sintering temperature on the properties of coal fly ash-based tubular ceramic membrane for flue gas moisture recovery. J. Eur. Ceram. Soc., 2021, 41, (11), 56965710. https://doi.org/10.1016/j.jeurceramsoc.2021.04.055
Lin, Y.; Zou, D.; Chen X. et al. Low temperature sintering preparation of high- permeability TiO2/Ti composite membrane via facile coating method. Appl. Surf. Sci., 2015, 349, 8–16.
Liu J.; Dong, Y.; Dong, X.; S. et al. Feasible recycling of industrial waste coal fly ash for preparation of anorthite-cordierite based porous ceramic membrane supports with addition of dolomite. J. Eur. Ceram. Soc., 2016, 36, 1059–1071. https://doi.org/10.1016/j.jeurceramsoc.2015.11.012
Liu, Y. et al. Alcohols assisted in-situ growth of MoS2 membrane on tubular ceramic substrate for nanofiltration. J. Membr. Sci., 2022, 659, 120777. https://doi.org/10.1016/j.memsci.2022.120777
Lorente-Ayza, M.-M.; Mestre, S.; Menéndez, M.; Sánchez, E. Comparison of extruded and pressed low cost ceramic supports for microfiltration membranes. J. Eur. Ceram. Soc. 2015, 35, 3681–3691. https://doi.org/10.1016/j.jeurceramsoc.2015.06.010
Mavukkandy, M. et al. Thin film deposition techniques for polymeric membranes– A review. J. Membr. Sci., 2020, 610, 118258. https://doi.org/10.1016/j.memsci.2020.118258
Medvedkova, N. G., Nazarov, V. V. Sol-gel preparation of selective layers of ceramic ultrafiltration membranes based on titania. Glass. Ceram., 1999, 53, 117–119. https://doi.org/10.1007/BF01166067
Moattari R., Mohammadi T. Chapter 5 - Nanostructured membranes for water treatments, In Micro and Nano Technologies, Nanotechnology in the Beverage Industry, Elsevier, 2020, 129–150. https://doi.org/10.1016/B978-0-12-819941-1.00005-5.
Nair, P., Mizukami, F., Okubo, T., Nair, J., Keizer, K.; Burggraaf, A. J. High-temperature catalyst supports and ceramics membranes: metastability and particle packing. AIChE J., 1997, 43 (11), 2710–2714.
Nandi, B. K., Uppaluri, R., Purkait, M. K. Preparation and characterization of low cost ceramic membranes for micro-filtration applications. Appl. Clay Sci., 2008, 42, 102–110. https://doi.org/10.1016/j.clay.2007.12.001
Sabzi, M.; Mousavi Anijdan, S. H.; Shamsodin, M.; Farzam, M.; Hojjati-Najafabadi, A.; Feng, P.; Park, N.; Lee, U. A Review on Sustainable Manufacturing of Ceramic-Based Thin Films by Chemical Vapor Deposition (CVD): Reactions Kinetics and the Deposition Mechanisms. Coatings 2023, 13, 188. https://doi.org/10.3390/coatings13010188
Saffaj, N.; Persin, M.; Younsi, S. A.; Albizane, A.; Cretin, M.; Larbot, A. Elaboration and characterization of microfiltration and ultrafiltration membranes deposited on raw support prepared from natural Moroccan clay: Application to filtration of solution containing dyes and salts. Appl. Clay Sci., 2006, 31, 110–119. https://doi.org/10.1016/j.clay.2005.07.002
Sah, A., Castricum, H.L., Bliek, A., Blank, D., Elshof, J. E. Hydrophobic modification of gamma- alumina membranes with organochlorosilanes. J. Membr. Sci., 2004, 243 (1–2), 125–132. https://doi.org/10.1016/j.memsci.2004.05.031
Schafföner, S.; Freitag, L.; Hubálková, J., Aneziris, C. Functional composites based on refractories produced by pressure slip casting, J. Eur. Cer. Societ., 2016, 36 (8), 2109–2117. https://doi.org/10.1016/j.jeurceramsoc.2016.02.008
Schiffer, S. et al. Effects of selective layer properties of ceramic multi-channel microfiltration membranes on the milk protein fractionation. Sep. Purif. Technol., 2021, 259, 118050.
Serhiienko, A.; Dontsova, T.; Yanushevska, O.; Vorobyova, V.; Vasyliev, G. Characterization of ceramic membrane support based on Ukrainian kaolin, Molec. Cryst. Liq. Cryst., 2023, 752 (1), 128–141. https://doi.org/10.1080/15421406.2022.2091279
Serhiienko, A. O., Dontsova, T. A., Yanushevska, O. I., Nahirniak, S. V., Ahmad, H.-B. Ceramic membranes: New trends and prospects (short review). Wat. and Wat. Purif. Tech.. Scientif. and technic. news, 2020, 27 (2), 4–31. https://doi.org/10.20535/2218-93002722020208817
Sun, L.; Wang, Z.; Gao, B. Ceramic membranes originated from cost-effective and abundant natural minerals and industrial wastes for broad applications – a review. Desal. and Wat.Treat., 2020, 201, 121–138. https://doi.org/10.5004/dwt.2020.25910
Tomina, V; Nazarchuk, G.; Melnyk, I. Modification of Ceramic Membranes by Silica Nanoparticles with Thiourea Functions, J. Nanomater., 2019, 2019, 2534934. . https://doi.org/10.1155/2019/2534934
Xu, R., Wang, J.H., Kanezashi, M., Yoshioka, T. and Tsuru, T. Reverse osmosis performance of organosilica membranes and comparison with the pervaporation and gas permeation properties. AIChE J., 2013, 59 (4), 1298–1307. https://doi.org/10.1002/aic.13885
Yoshino, Y., Suzuki, T., Nair, B., Taguchi, H., Itoh, N. Development of tubular substrates, silica based membranes and membrane modules for hydrogen separation at high temperature. J. Membr. Sci., 2005, 267, 8–17. https://doi.org/10.1016/j.memsci.2005.05.020
Zhao, S. et al. The Future of Layer-by-Layer Assembly: A Tribute to ACS Nano Associate Editor Helmuth. CS Nano, 2019, 13 (6), 6151–6169. https://doi.org/10.1021/acsnano.9b03326
Zhou, J.-E.; Dong, Y.; Hampshire, S.; Meng, G. Utilization of sepiolite in the synthesis of porous cordierite ceramics. Appl. Clay Sci., 2011, 52, 328–332. https://doi.org/10.1016/j.clay.2011.02.001
Zhou, J.; Zhang, X.; Wang, Y.; Larbot, A.; Hu, X. Elaboration and characterization of tubular microporous ceramic support for membranes from kaolin and dolomite. J. Porous Mater., 2010, 17, 1–9. https://doi.org/10.1007/s10934-008-9258-z
Zou, D.; Mao, H.; Zhong, Z. Construction strategies of self-cleaning ceramic composite membranes for water treatment. Ceram. Internat., 2022, 48 (6), 7362–7373. https://doi.org/10.1016/j.ceramint.2021.12.086
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Kyrii S.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The ownership of copyright remains with the Authors.
Authors may use their own material in other publications provided that the Journal is acknowledged as the original place of publication and National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” as the Publisher.
Authors are reminded that it is their responsibility to comply with copyright laws. It is essential to ensure that no part of the text or illustrations have appeared or are due to appear in other publications, without prior permission from the copyright holder.
WPT articles are published under Creative Commons licence:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under CC BY-NC 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. The use of the material for commercial purposes is not permitted.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.