MATERIALS AND METHODS FOR CERAMIC MEMBRANE SYNTHESIS. SHORT REVIEW

Authors

DOI:

https://doi.org/10.20535/2218-930012023281034

Keywords:

ceramic membrane, low-cost membrane material, materials for ceramic membrane, membrane technology, selective layer, synthesis methods

Abstract

This article briefly overviews the main types of raw materials used to synthesise ceramic membranes. Traditional materials such as aluminium oxide, silicon dioxide, titanium dioxide, zirconium dioxide, zeolites, and cost-effective materials like various clays and industrial waste are highlighted. Modern methods for producing high-performance ceramic membranes are discussed, including slip casting, tape casting, pressing, extrusion, solid state method etc. The general scheme for preparing a selective layer on a ceramic membrane using various methods for synthesising it is also examined. Furthermore, the cost of commercial ceramic membranes and influencing factors are analysed. Based on contemporary literature, ceramic membranes exhibit distinct advantages over polymer membranes with their potential for application under high temperature, high pressure, and aggressive environments. Additionally, their energy efficiency, compactness, and versatility make them a viable alternative for water purification, replacing more expensive methods like coagulation and adsorption. Ceramic membranes have become a competitive alternative to polymer membranes, showcasing unique material properties and excellent characteristics. Using cost-effective materials for ceramic membrane fabrication allows for utilisation in economically sensitive sectors. Such membranes demonstrate excellent mechanical properties and high permeability, while inexpensive materials can reduce costs. Current scientific research and developments focus on utilising various clays and waste materials to produce ceramic membranes, aiming to create new generations of ceramic membranes for environmentally friendly applications.

References

Abdullayev, A.; Bekheet, M.; Hanaor, D.; Gurlo, A. Materials and Applications for Low-Cost Ceramic Membranes. Membranes, 2019, 9, 105. https://doi.org/10.3390/membranes9090105

Ahmad, N.A.; Leo, C.P.; Ahmad, A.L. Superhydrophobic alumina membrane by steam impingement: Minimum resistance in microfiltration. Sep. Purif. Technol., 2013, 107, 187–194. https://doi.org/10.1016/j.seppur.2013.01.011

Ajiboye, T.; Sawunyama, L; Ravele, M.; Rasheed-Adeleke, A.; Seheri, N.; Onwudiwe, D.; Mhlanga, S. Synthesis approaches to ceramic membranes, their composites, and application in the removal of tetracycline from water. Env.Advan., 2023, 12, 100371. https://doi.org/10.1016/j.envadv.2023.100371.

Ali, M. B.; Hamdi, N.; Rodriguez, M.; Mahmoudi, K.; Srasra, E. Preparation and characterization of new ceramic membranes for ultrafiltration. Ceram. Int., 2018, 44, 2328–2335. https://doi.org/10.1016/j.bsecv.2019.06.001

Aloulou, W.; Aloulou, H.; Khemakhem, M.; Duplay, J.; Daramola, M. O.; Amar, R. Synthesis and Characterization of Clay-Based Ultrafiltration Membranes Supported on Natural Zeolite for Removal of Heavy Metals from Wastewater. Environ. Technol. Innov., 2020, 18, 100794. https://doi.org/10.1016/j.eti.2020.100794

Amanmyrat, A.; Maged, F.B.; Dorian, A.H.; Gurlo, A. Materials and Applications for Low-Cost Ceramic Membranes. Membr., 2019, 9 (105), https://doi.org/10.3390/membranes9090105

Amin, Sh.; Abdallah, H.; Roushdy M.; El-Sherbiny. An Overview of Production and Development of Ceramic Membranes. Int. J. Appl. Eng. Res., 2016, 11 (12), 7708–7721.

Avirup, S.; Monal, D. Development and study of sandwiched layer ceramic membrane. Desal. and Wat. Treatm., 2019, 156, 229–237. https://doi.org/10.5004/dwt.2019.23786

Bhadra, M.; Mitra S. Nanostructured membranes in analytical chemistry. TrAC, 2013, 45, 248–263. https://doi.org/10.1016/j.trac.2012.12.010

Bhave, R.R. Inorganic Membranes: Synthesis, Characteristics, and Applications; Van Nostrand-Reinhold: New York, 1991, 480 р.

Bico, J.; Thiele, U.; Quéré, D. Wetting of textured surfaces. Colloids Surf. A Physicochem. Eng. Asp. 2002, 206, 41–46. https://doi.org/10.1016/S0927-7757(02)00061-4

Biesheuvel, P. M.; Verweij, H. Design of ceramic membrane supports: permeability, tensile strength and stress. J. Membr. Sci., 1999, 156 (1), 141–152.

Boccaccini, A.; Zhitomirsky, I. Application of electrophoretic and electrolytic deposition techniques in ceramics processing. Curr Opin Solid State Mater Sci, 2002, 6 (3), 251–260.

Bouazizi, A.; Saja, S.; Achiou, B.; Ouammou, M.; Calvo, J. I.; Aaddane, A.; Younssi, S. A. Elaboration and characterization of a new flat ceramic MF membrane made from natural Moroccan bentonite. Application to treatment of industrial wastewater. Appl. Clay Sci., 2016, 132–133, 33–40. https://doi.org/10.1016/j.clay.2016.05.009

Boudaira, B.; Harabi, A.; Bouzerara, F.; Zenikheri, F.; Foughali, L.; Guechi, A. Preparation and characterization of membrane supports for microfiltration and ultrafiltration using kaolin (DD2) and CaCO3. Desalin. Water Treat., 2016, 57, 5258–5265. https://doi.org/10.1080/19443994.2015.1021998

Buonomenna, M. G. Membrane processes for a sustainable industrial growth. RSC Adv., 2013, 3, 5694–5740. https://doi.org/10.1039/C2RA22580H

Burggraaf, A. J.; Cot, L. Fundamentals of Inorganic Membrane Science and Technology; Elsevier: Amsterdam, 1996.

Chakraborty, S.; Uppaluri, R.; Das, C. Optimal fabrication of carbonate free kaolin based low cost ceramic membranes using mixture model response surface methodology. Appl. Clay Sci., 2018, 162, 101–112, https://doi.org/10.1016/j. clay.2018.06.002

Chen, G.; Ge, X.; Wang, Y.; Xing, W.; Guo, Y. Design and preparation of high permeability porous mullite support for membranes by in-situ reaction. Ceram. Int., 2015, 41, 8282–8287. https://doi.org/10.1016/j.ceramint.2015.02.045

Chen, L. et al. Preparation and mechanism analysis of high performance ceramic membrane by spray coating. RSC Adv., 2018, 8, 39884–39892. https://doi.org/10.1039/C8RA07258B

Chen, M.; Heijman, S. G. J.; Rietveld, L. C. State-of-the-Art Ceramic Membranes for Oily Wastewater Treatment: Modification and Application. Membranes, 2021, 11, 888. https://doi.org/10.3390/membranes11110888

Chihi, R.; Blidi, I.; Trabelsi-Ayadi, M.; Ayari, F.. Elaboration and characterization of a low-cost porous ceramic support from natural Tunisian bentonite clay. Compt. Rendus Chem., 2019, 22 (2–3) 188–197. https://doi.org/10.1016/j. crci.2018.12.002

Choi, N.-C.; Cho, K.-H.; Kim, M.-S.; Park, S.-J.; Lee, C.-G. A Hybrid Ion-Exchange Fabric/Ceramic Membrane System to Remove As(V), Zn(II), and Turbidity from Wastewater. Appl. Sci., 2020, 10, 2414. https://doi.org/10.3390/app10072414

DeFriend, K. A.; Wiesner, M. R.; Barron, A. R. Alumina and aluminate ultrafiltration membranes derived from alumina nanoparticles. J. Membr. Sci., 2003, 224, 11–28. https://doi.org/10.1016/S0376-7388(03)00344-2

Dong, Y.; Chen, S.; Zhang, X.; Yang, J.; Liu, X.; Meng, G. Fabrication and characterization of low cost tubular mineral-based ceramic membranes for micro-filtration from natural zeolite. J. Membr. Sci., 2006, 281, 592–599. https://doi.org/10.1016/j.memsci.2006.04.029

Dontsova, T. A et al. Enhanced Photocatalytic Activity of TiO2/SnO2 Binary Nanocomposites. J. Nanomater., 2020, 2020, 1-13. https://doi.org/10.1155/2020/8349480

Dommati, H.; Ray, S.; Wang, J.-C.; Chen S.-S. A comprehensive review of recent developments in 3D printing technique for ceramic membrane fabrication for water purification. RSC Adv., 2019, 9, 16869–16883. https://doi.org/10.1039/C9RA00872A

Elaine Fung, Y. L.; Wang, H. Investigation of reinforcement of porous alumina by nickel aluminate spinel for its use as ceramic membrane. J. Membr. Sci., 2013, 444, 252–258. https://doi.org/10.1016/j.memsci.2013.05.025

Eom, J.-H.; Yeom, H.-J.; Kim, Y.-W.; Song, I.-H. Ceramic Membranes Prepared from a Silicate and Clay-mineral Mixture for Treatment of Oily Wastewater. Clays Clay Miner., 2015, 63, 222–234. https://doi.org/10.1346/CCMN.2015.0630305

Erdem, I. Sol-gel applications for ceramic membrane preparation. AIP Conference Proceedings, 2017, 1809, 020011. https://doi.org/10.1063/1.4975426

Fang, J. Qin, Q.; Wei, W.; Zhao X.; Jiang L. Elaboration of new ceramic membrane from spherical fly ash for microfiltration of rigid particle suspension and oil-in-water emulsion. Desalin., 2013, 311, 113–126. https://doi.org/10.1016/j.desal.2012.11.008

Foorginezhad, S.; Zerafat, M. M. Microfiltration of cationic dyes using nano-clay membranes. Ceram. Int., 2017, 43, 15146–15159. https://doi.org/10.1016/j.ceramint.2017.08.045

Galán-Arboledas, R. J.; Cotes, T.; Martínez, C.; Bueno, S. Influence of waste addition on the porosity of clay-based ceramic membranes. Desalin. Water Treat., 2016, 57, 2633–2639. https://doi.org/10.3390/membranes9090105

Gitis V.; Rothenberg G. Ceramic Membranes: New Opportunities and Practical Applications; John Wiley & Sons Inc.: Hoboken, 2016, 395 p.

Hamden, M.; Bouaziz, J. Preparation and characterization of tubular cermet membrane for microfiltration separation: application to the treatment of textile wastewater. Comptes Rendus. Chimie, 2021, 24 (1), 135–146. https://doi.org/10.5802/crchim.69

Harabi, A.; Zenikheri, F.; Boudaira, B.; Bouzerara, F.; Guechi, A.; Foughali, L. A new and economic approach to fabricate resistant porous membrane supports using kaolin and CaCO3. J. Eur. Ceram. Soc., 2014, 34, 1329–1340. https://doi.org/10.1016/j.jeurceramsoc.2013.11.007

Hedfi, I.; Hamdi, N.; Srasra, E.; Rodríguez, M. A. The preparation of micro-porous membrane from a Tunisian kaolin. Appl. Clay Sci., 2014, 101, 574–578. https://doi.org/10.1016/j.clay.2014.09.021

Herregods, S. J. F., Wyns, K., Buekenhoudt, A.; Meynen, V. The Use of Different Templates for the Synthesis of Reproducible Mesoporous Titania Thin Films and Small Pore Ultrafiltration Membranes. Adv. Eng. Mater., 2019, 21, 1900603. https://doi.org/10.1002/adem.201900603

Hu, Z.; Y. Yang, Q. Chang, F. Liu, Y. Wang, J. Rao, Preparation of a high- performance porous ceramic membrane by a two-step coating method and one-step sintering, Appl. Sci., 2018, 9 (1). https://doi.org/10.3390/app9010052

Hubadillah, S. K.; Othman, M. H. D.; Ismail, A. F.; Rahman, M. A.; Jaafar, J. A low cost hydrophobic kaolin hollow fiber membrane (h-KHFM) for arsenic removal from aqueous solution via direct contact membrane distillation. Sep. Purif. Technol., 2019, 214, 31–39. https://doi.org/10.1016/j.seppur.2018.04.025

Hung, W.-S. et al. Pressure-assisted self-assembly technique for fabricating composite membranes consisting of highly ordered selective laminate layers of amphiphilic graphene oxide. Carbon, 2014, 68, 670–677. https://doi.org/10.1016/j.carbon.2013.11.048

Isobe, T.; Kameshima, Y.; Nakajima, A.; Okada, K.; Hotta Y. Extrusion method using nylon 66 fibers for the preparation of porous alumina ceramics with oriented pores. J. Europ. Ceram. Soc., 2006, 26 (12), 2213–2217.

Issaoui, M.; Limousy, L. Low-cost ceramic membranes: Synthesis, classifications, and applications. C. R. Chimie, 2019, 22, 175–187. https://doi.org/10.1016/j.crci.2018.09.014

Jana, S.; Purkait, M. K.; Mohanty, K. Preparation and characterization of low-cost ceramic microfiltration membranes for the removal of chromate from aqueous solutions. Appl. Clay Sci., 2010, 47, 317–324. https://doi.org/10.1016/j.clay.2009.11.036

Jedidi, S.; Saïdi, S.; Khemakhem, A.; Larbot, N.; Elloumi-Ammar, A.; Fourati, A.; Charfi, A. et al. Elaboration of new ceramic microfiltration membranes from mineral coal fly ash applied to waste water treatment. J. Hazard. Mater., 2011, 172, 152–158. https://doi.org/10.1016/j.jhazmat.2009.06.151

Kagramanov, G. G.; Nazarov, V. V. Ceramic Membranes with Selective Layers Based on SiO2, TiO2, and ZrO2. Glass and Ceramics, 2001, 58, 166–168. https://doi.org/10.1023/A:1012366309705

Kelkar, S.; Wolden, C. Evaluation of Vapor Deposition Techniques for Membrane Pore Size Modification. J. Membr.Sci. and Res., 2017, 3, 64–70. http://dx.doi.org/10.22079/jmsr.2016.20345

Khemakhem, S.; Larbot, A.; Amar, R. B. Study of performances of ceramic microfiltration membrane from Tunisian clay applied to cuttlefish effluents treatment. Desalin., 2006, 200, 307–309.

Kucera, J. Membrane materials and module development: historical perspective, Encyclopedia of Membrane Science and Technology; John Wiley & Sons Inc.: Hoboken, 2013. https://doi.org/10.1002/9781118522318.emst033

Kujawa, J.; Cerneaux, S.; Kujawski, W.; Knozowska, K. Hydrophobic Ceramic Membranes for Water Desalination. Appl. Sci., 2017, 7, 402. https://doi.org/10.3390/app7040402

Kumar, V.; Monash, P.; Pugazhenthi, G. Treatment of oil-in-water emulsion using tubular ceramic membrane acquired from locally available low-cost inorganic precursors, Desalin. Water Treat., 2016, 57 (58), 28056–28070. https://doi.org/10.1080/19443994.2016.1179221

Lai, Z. P.; Bonilla, G.; Diaz, I.; Nery, J. G.; Sujaoti, K.; Amat, M. A. et al. Microstructural optimization of a zeolite membrane for organic vapor separation. Sci., 2003, 300 (5618), 456–460.

Liang, D.; Huang J.; Zhang Y. et al. Influence of dextrin content and sintering temperature on the properties of coal fly ash-based tubular ceramic membrane for flue gas moisture recovery. J. Eur. Ceram. Soc., 2021, 41, (11), 56965710. https://doi.org/10.1016/j.jeurceramsoc.2021.04.055

Lin, Y.; Zou, D.; Chen X. et al. Low temperature sintering preparation of high- permeability TiO2/Ti composite membrane via facile coating method. Appl. Surf. Sci., 2015, 349, 8–16.

Liu J.; Dong, Y.; Dong, X.; S. et al. Feasible recycling of industrial waste coal fly ash for preparation of anorthite-cordierite based porous ceramic membrane supports with addition of dolomite. J. Eur. Ceram. Soc., 2016, 36, 1059–1071. https://doi.org/10.1016/j.jeurceramsoc.2015.11.012

Liu, Y. et al. Alcohols assisted in-situ growth of MoS2 membrane on tubular ceramic substrate for nanofiltration. J. Membr. Sci., 2022, 659, 120777. https://doi.org/10.1016/j.memsci.2022.120777

Lorente-Ayza, M.-M.; Mestre, S.; Menéndez, M.; Sánchez, E. Comparison of extruded and pressed low cost ceramic supports for microfiltration membranes. J. Eur. Ceram. Soc. 2015, 35, 3681–3691. https://doi.org/10.1016/j.jeurceramsoc.2015.06.010

Mavukkandy, M. et al. Thin film deposition techniques for polymeric membranes– A review. J. Membr. Sci., 2020, 610, 118258. https://doi.org/10.1016/j.memsci.2020.118258

Medvedkova, N. G., Nazarov, V. V. Sol-gel preparation of selective layers of ceramic ultrafiltration membranes based on titania. Glass. Ceram., 1999, 53, 117–119. https://doi.org/10.1007/BF01166067

Moattari R., Mohammadi T. Chapter 5 - Nanostructured membranes for water treatments, In Micro and Nano Technologies, Nanotechnology in the Beverage Industry, Elsevier, 2020, 129–150. https://doi.org/10.1016/B978-0-12-819941-1.00005-5.

Nair, P., Mizukami, F., Okubo, T., Nair, J., Keizer, K.; Burggraaf, A. J. High-temperature catalyst supports and ceramics membranes: metastability and particle packing. AIChE J., 1997, 43 (11), 2710–2714.

Nandi, B. K., Uppaluri, R., Purkait, M. K. Preparation and characterization of low cost ceramic membranes for micro-filtration applications. Appl. Clay Sci., 2008, 42, 102–110. https://doi.org/10.1016/j.clay.2007.12.001

Sabzi, M.; Mousavi Anijdan, S. H.; Shamsodin, M.; Farzam, M.; Hojjati-Najafabadi, A.; Feng, P.; Park, N.; Lee, U. A Review on Sustainable Manufacturing of Ceramic-Based Thin Films by Chemical Vapor Deposition (CVD): Reactions Kinetics and the Deposition Mechanisms. Coatings 2023, 13, 188. https://doi.org/10.3390/coatings13010188

Saffaj, N.; Persin, M.; Younsi, S. A.; Albizane, A.; Cretin, M.; Larbot, A. Elaboration and characterization of microfiltration and ultrafiltration membranes deposited on raw support prepared from natural Moroccan clay: Application to filtration of solution containing dyes and salts. Appl. Clay Sci., 2006, 31, 110–119. https://doi.org/10.1016/j.clay.2005.07.002

Sah, A., Castricum, H.L., Bliek, A., Blank, D., Elshof, J. E. Hydrophobic modification of gamma- alumina membranes with organochlorosilanes. J. Membr. Sci., 2004, 243 (1–2), 125–132. https://doi.org/10.1016/j.memsci.2004.05.031

Schafföner, S.; Freitag, L.; Hubálková, J., Aneziris, C. Functional composites based on refractories produced by pressure slip casting, J. Eur. Cer. Societ., 2016, 36 (8), 2109–2117. https://doi.org/10.1016/j.jeurceramsoc.2016.02.008

Schiffer, S. et al. Effects of selective layer properties of ceramic multi-channel microfiltration membranes on the milk protein fractionation. Sep. Purif. Technol., 2021, 259, 118050.

Serhiienko, A.; Dontsova, T.; Yanushevska, O.; Vorobyova, V.; Vasyliev, G. Characterization of ceramic membrane support based on Ukrainian kaolin, Molec. Cryst. Liq. Cryst., 2023, 752 (1), 128–141. https://doi.org/10.1080/15421406.2022.2091279

Serhiienko, A. O., Dontsova, T. A., Yanushevska, O. I., Nahirniak, S. V., Ahmad, H.-B. Ceramic membranes: New trends and prospects (short review). Wat. and Wat. Purif. Tech.. Scientif. and technic. news, 2020, 27 (2), 4–31. https://doi.org/10.20535/2218-93002722020208817

Sun, L.; Wang, Z.; Gao, B. Ceramic membranes originated from cost-effective and abundant natural minerals and industrial wastes for broad applications – a review. Desal. and Wat.Treat., 2020, 201, 121–138. https://doi.org/10.5004/dwt.2020.25910

Tomina, V; Nazarchuk, G.; Melnyk, I. Modification of Ceramic Membranes by Silica Nanoparticles with Thiourea Functions, J. Nanomater., 2019, 2019, 2534934. . https://doi.org/10.1155/2019/2534934

Xu, R., Wang, J.H., Kanezashi, M., Yoshioka, T. and Tsuru, T. Reverse osmosis performance of organosilica membranes and comparison with the pervaporation and gas permeation properties. AIChE J., 2013, 59 (4), 1298–1307. https://doi.org/10.1002/aic.13885

Yoshino, Y., Suzuki, T., Nair, B., Taguchi, H., Itoh, N. Development of tubular substrates, silica based membranes and membrane modules for hydrogen separation at high temperature. J. Membr. Sci., 2005, 267, 8–17. https://doi.org/10.1016/j.memsci.2005.05.020

Zhao, S. et al. The Future of Layer-by-Layer Assembly: A Tribute to ACS Nano Associate Editor Helmuth. CS Nano, 2019, 13 (6), 6151–6169. https://doi.org/10.1021/acsnano.9b03326

Zhou, J.-E.; Dong, Y.; Hampshire, S.; Meng, G. Utilization of sepiolite in the synthesis of porous cordierite ceramics. Appl. Clay Sci., 2011, 52, 328–332. https://doi.org/10.1016/j.clay.2011.02.001

Zhou, J.; Zhang, X.; Wang, Y.; Larbot, A.; Hu, X. Elaboration and characterization of tubular microporous ceramic support for membranes from kaolin and dolomite. J. Porous Mater., 2010, 17, 1–9. https://doi.org/10.1007/s10934-008-9258-z

Zou, D.; Mao, H.; Zhong, Z. Construction strategies of self-cleaning ceramic composite membranes for water treatment. Ceram. Internat., 2022, 48 (6), 7362–7373. https://doi.org/10.1016/j.ceramint.2021.12.086

Downloads

Published

2023-07-03

Issue

Section

MATERIALS AND EQUIPMENT FOR WATER TREATMENT