ENVIRONMENTAL PROBLEMS CAUSED BY THE USE OF REVERSE OSMOSIS MEMBRANE ELEMENTS, AND WAYS TO SOLVE THEM

Authors

  • Artem Tyvonenko Department of Technology of Inorganic Substances, Water Treatment and General Chemical Technology, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Ukraine https://orcid.org/0000-0003-1755-3800
  • Tetiana Mitchenko Department of Technology of Inorganic Substances, Water Treatment and General Chemical Technology, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Ukraine https://orcid.org/0000-0002-4876-5411
  • Sergey Vasilyuk Laboratory of ion exchange and adsorption National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Ukraine http://orcid.org/0000-0002-7028-0517

DOI:

https://doi.org/10.20535/2218-930012022259491

Keywords:

reverse osmosis spiral membrane elements, desalination, fouling, reuse, utilization

Abstract

More than 70 percent of our planet is covered with water. And yet water is a scarce resource, and it is our future. According to the World Wildlife Fund, 1.1 billion people do not have access to it, and 2.7 billion experience a shortage of drinking water at least once a year. By 2025, two-thirds of the world's population may face water shortages.

The shortage of drinking water and the search for renewable resources are of the most important problems in the modern world, the solution of which is directed to considerable intellectual and financial resources. Reverse osmosis is one of the most common technologies for obtaining high-quality drinking water. Technological solutions constantly improve the process of reverse osmosis and reverse osmosis spiral wound membrane elements used, science and business go hand in hand. But the price of this progress is the annual generation of a large amount of waste generated from used reverse osmosis roll membrane elements, which are usually sent to the landfill, while there are no technological solutions for their disposal.

This work provides information on the available amount of such waste in the world and the dynamics of its growth in order to assess the scale of environmental damage that occurs as a result.

The work collected information about the market of reverse osmosis spiral wound membrane elements in the world, and directions of their use. The structure, composition of components and technical characteristics of reverse osmosis spiral wound membrane elements are considered in detail, which makes it possible to evaluate the ways and possibilities of their utilization. The problems of surface contamination due to various types of fouling are considered. The main attention in the work is given to the reasons that cause the formation of waste. Based on the collected data, the scale of annual waste generation, which is formed due to spent reverse osmosis roll membrane elements, was analyzed. The possibility of reusing reverse osmosis spiral wound membrane elements and the main methods of their safe disposal are also considered. Summarizing the work carried out, recommendations were made on ways to solve the problem.

Author Biography

Sergey Vasilyuk, Laboratory of ion exchange and adsorption National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"

Scopus https://www.scopus.com/authid/detail.uri?authorId=6506005011

Web of Science B-4064-2009

Google Scholar https://scholar.google.com/citations?user=_GkGrcUAAAAJ&hl=ru&authuser=1

References

Adel, M.; Nada, T.; Amin, S.; Anwar, T.;. Mohamed A.A. Characterization of fouling for a full-scale seawater reverse osmosis plant on the Mediterranean sea: membrane autopsy and chemical cleaning efficiency. Groundwater for Sustainable Development. 2022, 16, 100704. https://doi.org/10.1016/j.gsd.2021.100704

Agnihotri, B.; Sharma, A.; Gupta A.B. Characterization and analysis of inorganic foulants in RO membranes for groundwater treatment. Desalination. 2020, 491, 114567. https://doi.org/10.1016/j.desal.2020.114567

Aliyu, U.M.; Rathilal, S.; Isa, Y.M. Membrane desalination technologies in water treatment: A review. Water Practice and Technology. 2018, 13, 738 – 752. https://doi.org/10.2166/wpt.2018.084

Al-Salem, S. M.; Lettieri, P.; Baeyens J. Recycling and recovery routes of plastic solid waste (PSW): A review. Waste Management. 2009, 29, 2625–2643. https://doi.org/10.1016/j.wasman.2009.06.004

Asadollahi, M.; Bastani, D.; Musavi S. A. Enhancement of surface properties and performance of reverse osmosis membranes after surface modification: a review. Desalination. 2017, 420, 330 – 383. https://doi.org/10.1016/j.desal.2017.05.027

Contreras-Martínez, J.; García-Payo, C.; Arribas, P.; Rodríguez-Sáez, L.; Lejarazu-Larrañaga, A.; García-Calvo, E. Khayet, M. Recycled reverse osmosis membranes for forward osmosis technology. Desalination. 2021, 519, 115312. https://doi.org/10.1016/j.desal.2021.115312

Cran, M.J.; Bigger, S.W.; Gray S.R. Degradation of polyamide reverse osmosis membranes in the presence of chloramine. Desalination. 2011, 273, 58 – 63. https://doi.org/10.1016/j.desal.2011.04.050

Dai, D.; Chen, Y.; Zhu, W.; Shi, L.;. Cheng, R.; Zheng, X.; Li, J. Recycling of spent RO membranes: review of research status and progress. Chemical Industry and Engineering Progress. 2021, 40, 2290 – 2297. https://doi.org/0.16085/j.issn.1000-6613.2020-0906

Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain directives; 32008L0098.; Off. J. Eur. Union L13: 2008; 3–30.

Donose, B. C.; Sukumar, S.; Pidou, M.; Poussade, Y.; Keller, J.; Gernjak W. Effect of pH on the ageing of reverse osmosis membranes upon exposure to hypochlorite. Desalination. 2013, 309, 97–105. https://doi.org/10.1016/j.desal.2012.09.027

García-Pacheco, R.; Landaburu-Aguirre, J.; Lejarazu-Larrañaga, A.; Rodríguez-Sáez, L.; Molina, S.; Ransome, T.; García-Calvo, E. Free chlorine exposure dose (ppm•h) and its impact on RO membranes ageing and recycling potential. Desalination. 2019, 457, 133-143. https://doi.org/10.1016/j.desal.2019.01.030

García-Pacheco, R.; Landaburu-Aguirre, J.; Molina, S.; Rodríguez-Sáez, L.; Teli, S. B.; García-Calvo, E. Transformation of end-of-life RO membranes into NF and UF membranes: Evaluation of membrane performance. J. Membr. Sci. 2015, 495, 305-315. https://doi.org/10.1016/j.memsci.2015.08.025

Goh, P.S.; Lau, W.J.; Othman, M.H.D.; Ismail A.F. Membrane fouling in desalination and its mitigation strategies. Desalination. 2018, 425, 130 – 155. https://doi.org/10.1016/j.desal.2017.10.018

Gonzalez-Gil, G.; Behzad, A. R.; Farinha, A. S. F.; Zhao, C.; S. S. Bucs; Nada, T.; Das, R.; Altmann, T.; Buijs, P. J.; Vrouwenvelder, J.S. Clinical autopsy of a reverse osmosis membrane module. Front. Chem. Eng. 2021, 3, 683379. https://doi.org/10.3389/fceng.2021.683379

Hailemariam, R. H.; Woo, Y. C.; Damtie, M. M.; Kim, B. C.; Park K. D.; Choi, J. S. Reverse osmosis membrane fabrication and modification technologies and future trends: A review. Adv. Colloid Interface Sci. 2020, 276, 102100. https://doi.org/10.1016/j.cis.2019.102100

Jiang, S.; Li, Y.; Ladewig, B. P. A review of reverse osmosis membrane fouling and control strategies. Sci. Total Environ. 2017, 595, 567 – 585. https://doi.org/10.1016/j.scitotenv.2017.03.235

Kang, G.D.; Gao, C.J.; Chen, W.D.; Jie, X.M.; Cao, Y.M.; Yuan, Q. Study on hypochlorite degradation of aromatic polyamide reverse osmosis membrane. J. Membr. Sci. 2007, 300, 165–171. https://doi.org/10.1016/j.memsci.2007.05.025

Khaless, K.; Achiou, B.; Boulif, R.; Benhida R. Recycling of spent reverse osmosis membranes for second use in the clarification of wet-process phosphoric acid. Minerals. 2021, 11, https://doi.org/10.3390/min11060637

Landaburu-Aguirre, J.; García-Pacheco, R.; Molina, S.; Rodríguez Rabadan, L.; Saez, E.; García-Calvo J. Fouling prevention, preparing for re-use and membrane recycling. Towards circular economy in RO desalination. Desalination. 2016, 393, 16–30. https://doi.org/10.1016/j.desal.2016.04.002

Lawler, W.; Bradford-Hartke, Z.; Cran, M.J.; Duke, M.; Leslie, G.; Ladewig B.P.; Le-Clech, P. Towards new opportunities for reuse, recycling and disposal of used reverse osmosis membranes. Desalination. 2012, 299,103–112. https://doi.org/10.1016/j.desal.2012.05.030

Ling, R.; Yu, L.; Pham, T. P. T.; Shao, J.; Chen, J. P.; Reinhard, M. The tolerance of a thin-film composite polyamide reverse osmosis membrane to hydrogen peroxide exposure. J. Membr. Sci. 2017, 524, 529 – 536. https://doi.org/10.1016/j.memsci.2016.11.041

Ling, R.; Shao, Chen, J.P.; Reinhard, M. Iron catalyzed degradation of an aromatic polyamide reverse osmosis membrane by free chlorine. J. Membr. Sci. 2019, 577, 205 – 211. https://doi.org/10.1016/j.memsci.2019.02.010

Mitchenko, T. Ye. et al. The series of editions. The world of modern water treatment. Methods and materials; NGO WaterNet, 2019. ISBN 978-966-97940-2-4.

Moradia, M.R.; Pihlajamäkia, A.; Hesampoura, M.; Ahlgrenb, J.; Mänttäria, M. End-of-life RO membranes recycling: Reuse as NF membranes by polyelectrolyte layer-by-layer deposition. J. Membr. Sci. 2019, 584, 300-308. https://doi.org/10.1016/j.memsci.2019.04.060

Othman, N. H.; Alias, N. H.; Fuzil, N.S.; Marpani, F.; Shahruddin, M. A Review on th e Use of Membrane Technology Systems in Developing Countries. Membranes. 2021, 12, 1-37. https://doi.org/10.3390/membranes12010030

Ouali, S.; Loulergue, P.; Biard, P. F.; Nasrallah, N.; Szymczyk A. Ozone compatibility with polymer nanofiltration membranes. J. Membr. Sci. 2021, 618, 118656. https://doi.org/10.1016/j.memsci.2020.118656

Ould, M. E; Penate Suarez, D. B.; Vince, F.; Jaouen, P.; Pontie M. New Lives for Old Reverse Osmosis (RO) Membranes. Desalination. 2010, 253, 62–70. https://doi.org/10.1016/j.desal.2009.11.032

Paula, E. C. de; Amaral, M. C. S. Environmental and economic evaluation of end-of-life reverse osmosis membranes recycling by means of chemical conversion. J. Cleaner Prod. 2018, 194, 85–93. https://doi.org/10.1016/j.jclepro.2018.05.099

Pontie, M.; Awad, S.; Tazerout, M.; Chaouachi, O.; Chaouachi B. Recycling and energy recovery solutions of end-of-life reverse osmosis (RO) membrane materials: a sustainable approach. Desalination. 2017, 423, 30–40. https://doi.org/10.1016/j.desal.2017.09.012

Qasim, M.; Badrelzaman, M.; Darwish, N.N.; Darwish, N.A.; Hilal N. Reverse osmosis desalination: A state-of-the-art review. Desalination. 2019, 459, 59 – 104. https://doi.org/10.1016/j.desal.2019.02.008

Tyvonenko, A.V.; Homaniuk O.V.; Mitchenko, T.Ye.; Vasilyuk S.L. Ecological analysis of the market of reverse osmotic spiral wound membrane. Resources of natural waters in Carpathian region/Problems of protection and rational exploatation: 20TH International Scientific-Practical, L`viv, May 26–27 2022.

Varin, K.J.; Lin, N.H.; Cohen, Y. Biofouling and cleaning effectiveness of surface nanostructured reverse osmosis membranes. J. Membr. Sci. 2013, 446, 472–481. https://doi.org/10.1016/j.memsci.2013.06.064

Verbeke, R.; Eyley, S.; Szymczyk, A.; Thielemans, W.; Vankelecom Ivo F.J. Controlled chlorination of polyamide reverse osmosis membranes at real scale for enhanced desalination performance. J. Membr. Sci. 2020, 611, 118400. https://doi.org/10.1016/j.memsci.2020.118400

Yu, L.; Ling, R.; Chen, J.P.; Reinhard M. Quantitative assessment of the iron-catalyzed degradation of a polyamide nanofiltration membrane by hydrogen peroxide. J. Membr. Sci. 2019, 588, 117154. https://doi.org/10.1016/j.memsci.2019.05.078

Downloads

Published

2022-06-28

Issue

Section

ENVIRONMENTAL PROBLEMS OF WATER TREATMENT PROCESSES