ADSORPTION OF 4-CHLORPHENOL BY BROWN COAL ACTIVATED BY POTASSIUM HYDROXIDE

Authors

DOI:

https://doi.org/10.20535/2218-930012021233672

Keywords:

activated carbon, adsorption, alkaline activation, brown coal, porous structure, 4-chlorophenol

Abstract

The purpose of work is to evaluate the 4-chlorophenol (CP) adsorption capacity of brown coal activated carbons (ACs) prepared at different temperature of KOH activation. ACs were obtained in three stages: 1) impregnation of coal with a KOH solution, 2) heating (4 deg/min) in argon to a given temperature t (400-800°C) and exposure for 1 h, 3) cooling, washing from KOH, drying. The samples are designated as AC(t). Based on the N2 adsorption-desorption isotherms, the ACs total pore volume (Vt, cm3/g) and specific surface area (S, m2/g) were determined. The ACs adsorption capacity were measured at 25°С, CP concentration ≤700 mg/L, АC dosage – 1 g/L.

The alkaline activation temperature was found to be a key factor in forming porosity of ACs and ability to adsorb CP. The CP maximum capacity (ACP(m), mg/g) increases 6.6 times up to 307 mg/g for AC(800) having S=1142 m2/g. The specific adsorption capacity (ACP(S) = ACP(m)/S, mg/m2) sharply decreases in a sample range from AC(400) to AC(550) and weakly depends on temperature at 550-800°C. The kinetics of CP adsorption is best described by a pseudo-second order model. The rate determining stage is the interaction of CP molecules with AC surface. The CP adsorption isotherms are best described by the Langmuir model.

The dependence of the ACP(m) from S can be approximated by three linear equations that probably correspond to the three regions of forming surface adsorbtion centers (AdCs). The first (S≤370 m2/g) is characterized by a small adsorption capacity increment (kS=0.103 mg/m2), but a significant (16.4 times) decrease in the specific capacity ACP(S). In the second region (S=370-770 m2/g, t=550-750°C), capacity increment is 10 times more (kS=0.985 mg/m2) and in the third region (S≥770 m2/g, t≥750°C) the increase in CP capacity is the smallest (kS=0.067 mg/m2). The thermoinitiated formation of AdCs is assumed to be not proportional to the increase in surface area, and their chemical structure and reactivity is determined by the alkaline activation temperature.

References

Ahmed, M.J.; Theydan, S.K. “Adsorption of p-chlorophenol onto microporous activated carbon from Albizia lebbeck seed pods by one-step microwave assisted activation”. J. Anal. Appl. Pyrolysis., 2013, 100, 253-260. DOI: https://doi.org/10.1016/j.jaap.2013.01.008

Chen, C.; Geng, X.; Huang, W. “Adsorption of 4-chlorophenol and aniline by nanosized activated carbons”. Chem. Eng. J., 2017, 327, 941-952. DOI: https://doi.org/10.1016/j.cej.2017.06.183

Czaplicka, M. “Sources and transformations of chlorophenols in the natural environment”. Sci. Total Environ., 2004, 322(1–3), 21-39. DOI: https://doi.org/10.1016/j.scitotenv.2003.09.015

Ding, H.; Li, X.; Wang, J.; Zhang, X.; Chen C. “Adsorption of chlorophenols from aqueous solutions by pristine and surface functionalized single-walled carbon nanotubes”. J. Environ. Sci., 2016, 43, 187-198. DOI: https://doi.org/10.1016/j.jes.2015.09.004

Fedorova, N.I.; Manina, T.S.; Ismagilov, Z.R.; “Adsorption of phenol by carbon sorbents based on oxidized coals”. Solid Fuel Chemistry, 2015, 49(1), 30-35. DOI: https://doi.org/10.3103/S0361521915010048

Hameed, B.H.; Chin, L.H.; Rengaraj, S. “Adsorption of 4-chlorophenol onto activated carbon prepared from rattan sawdust”. Desalination, 2008, 225(1–3), 185-198. DOI: https://doi.org/10.1016/j.desal.2007.04.095

Ho, Y.; McKay, G. “Pseudo-second order model for sorption processes”. Process Biochem., 1999, 34(5), 451–465. DOI: https://doi.org/10.1016/S0032-9592(98)00112-5

Jagiello, J.; Olivier, J.P. “2D-NLDFT adsorption models for carbon slit-shaped pores with surface energetical heterogeneity and geometrical corrugation”. Carbon, 2013, 55, P. 70-80. DOI: https://doi.org/10.1016/j.carbon.2012.12.011

Khamizov, R.Kh. “A pseudo-second order kinetic equation for sorption processes”. Russ. J. Phys. Chem. A., 2020, 94(1), 171-176. DOI: https://doi.org/10.1134/S0036024420010148

Kucherenko, V.A.; Shendrik, T.G.; Tamarkina, Yu.V.; Mysyk R.D. “Nanoporosity development in the thermal-shock KOH activation of brown coal”. Carbon, 2010, 48(15), 4556–4558. DOI: https://doi.org/10.1016/j.carbon.2010.07.027

Kucherenko, V.O.; Tamarkina, Yu.V.; Rayenko, G.F. “Potassium hydroxide influence on the structure and surface area development of brown coal under alkali activation”. Himiya, Fizika ta Tehnologiya Poverhni, 2017, 8(2), 133-142. DOI: https://doi.org/10.15407/hftp08.02.133

Li, J.-M.; Meng, X.-G.; Hu, C.-W.; Du J. “Adsorption of phenol, p-chlorophenol and p-nitrophenol onto functional chitosan”. Bioresour. Technol., 2009, 100(3), 1168-1173. DOI: https://doi.org/10.1016/j.biortech.2008.09.015

Lin, S.-H.; Juang, R.-S. “Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: A review”. J. Environ. Manage., 2009, 90(3), 1336-1349. DOI: https://doi.org/10.1016/j.jenvman.2008.09.003

Lorenc-Grabowska, E.; Gryglewicz, G.; Machnikowski, J.; “p-Chlorophenol adsorption on activated carbons with basic surface properties”. Appl. Surf. Sci., 2010, 256(14), 4480-4487. DOI: https://doi.org/10.1016/j.apsusc.2010.01.078

Monsalvo, V.M.; Mohedano, A.F.; Rodriguez, J.J. “Activated carbons from sewage sludge: Application to aqueous-phase adsorption of 4-chlorophenol”. Desalination, 2011, 277(1-3). 377-382. DOI: https://doi.org/10.1016/j.desal.2011.04.059

Moussout, H.; Ahlafi, H.; Aazza, M.; Maghat, H. “Critical of linear and nonlinear equations of pseudo-first order and pseudo-second order kinetic models”. Karbala Int. J. Modern Science, 2018, 4(2), 244-254. DOI: https://doi.org/10.1016/j.kijoms.2018.04.001

Peng, Y.; Chen, J.; Lu, S.; Huang, J.; Zhang, M.; Buekens, A.; Li, X.; Yan J. “Chlorophenols in municipal solid waste incineration: a review”. Chem. Eng. J., 2016, 292, 398-414. DOI: https://doi.org/10.1016/j.cej.2016.01.102

Simonin, J.-P. “On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics”. Chem. Eng. J., 2016, 300, 254-263. DOI: https://doi.org/10.1016/j.cej.2016.04.079

Simonova, V.V.; Tamarkina, Yu.V.; Kucherenko, V.A.; Shendrik T.G. “Adsorption of lead ions by nanoporous materials prepared by brown coal alkali activation”. J. SibFU. Chemistry, 2012, 5(1), 113-122. DOI: http://elib.sfu-kras.ru/handle/2311/2848

Tamarkina, Yu.V.; Kucherenko, V.A.; Shendrik, T.G. “Alkaline activation of coals and carbon-base materials”. Solid Fuel Chemistry, 2014, 48(4), 251-259. DOI: https://doi.org/10.3103/S0361521914040119

Таmarkina, Yu.V.; Anishchenko, V.M.; Red’ko A.M.; Кucherenko, V.A. “Adsorption properties of coal activated with potassium hydroxide. Influence of coal rank” Himiya, Fizika ta Tehnologiya Poverhni, 2020, 11(2), 175-189. DOI: https://doi.org/10.15407/hftp11.02.175

Termoul, M.; Bestani, B.; Benderdouche, N.; Belhakem, M.; Naffrechoux E. “Removal of phenol and 4-chlorophenol from aqueous solutions by olive stone-based activated carbon”. Adsorpt. Sci. Technol., 2006, 24(5), 375-388. DOI: https://doi.org/10.1260/026361706779849780

Wu, F.-C.; Tseng, R.-L.; Hu, C.-C. “Comparisons of pore properties and adsorption performance of KOH-activated and steam-activated carbons”. Microporous Mesoporous Mater., 2005, 80(1-3), 95-106. DOI: https://doi.org/10.1016/j.micromeso.2004.12.005

Wu F.-C.; Wu, P.-H.; Tseng, R.-L.; Juang R.-S. “Preparation of activated carbons from unburnt coal in bottom ash with KOH activation for liquid-phase adsorption”. J. Environ. Manage., 2010, 91(5), 1097-1102. DOI: https://doi.org/10.1016/j.jenvman.2009.12.011

Wu, F.-C.; Wu, P.-H.; Tseng, R.-L.; Juang, R.-S. “Preparation of novel activated carbons from H2SO4-рretreated corncob hulls with KOH activation for quick adsorption of dye and 4-chlorophenol”. J. Environ. Manage., 2011, 9(3), 708-713. DOI: https://doi.org/10.1016/j.jenvman.2010.10.003

Downloads

Published

2021-08-13

Issue

Section

MATERIALS AND EQUIPMENT FOR WATER TREATMENT