EFFECT OF MELAMINE ACIDIC TREATMENT ON g-C3N4 PHYSICOCHEMICAL PROPERTIES AND CATALYTIC ACTIVITY

Authors

DOI:

https://doi.org/10.20535/wptstn.v28i3.216100

Keywords:

g-C3N4, Synthesis, Advanced Oxidation Process, Photocatalyst, Rhodamine B, Wastewater Treatment

Abstract

Heterogeneous photocatalysts are widely used for wastewater and natural water treatment from organic pollutants. In this paper, g-C3N4-based photocatalysts were synthesized by thermal condensation of melamine. The effect of melamine pretreatment with acetic acid on the physicochemical properties of g-C3N4 was studied using differential thermogravimetric analysis (DTA-TG), X-ray diffraction (XRD), FT-IR spectroscopy, scanning electron microscopy (SEM), and low-temperature nitrogen adsorption-desorption. The catalytic activity of synthesized photocatalysts was evaluated during the oxidative degradation of Rhodamine B in an aqueous solution under “soft” (type A) and “hard” (type B) UV irradiation.

Author Biographies

Andrei Ivanets, Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus

Laboratory of Adsorbents and Adsorption Processes

Vladimir Prozorovich, Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus

Laboratory of Adsorbents and Adsorption Processes

References

Chen, D.; Cheng, Y.; Zhou, N.; Chen, P.; Wang, Y.; Li, K.; Huo, Sh.; Cheng, P.; Peng, P.; Zhang, R.; Wang, L.; Liu, H.; Liu, Y.; Ruan, R. "Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review". J. Cleaner Prod., 2020, 268, article ID 121725. https://doi.org/10.1016/j.jclepro.2020.121725.

Dong, G.; Zhang, Y.; Pan, Q.; Qiu, J. " A fantastic graphitic carbon nitride (g-C3N4) material: Electronic structure, photocatalytic and photoelectronic properties". J. Photochem. Photobiol. C: Photochem. Rev., 2014, 20, 33-50. http://dx.doi.org/10.1016/j.jphotochemrev.2014.04.002.

He, F.; Wang, Zh.; Li, Y.; Peng, Sh.; Liu, B. "The nonmetal modulation of composition and morphology of g-C3N4-based photocatalysts". Appl. Catal., B, 2020, 269, article ID 118828. https://doi.org/10.1016/j.apcatb.2020.118828.

Ivanets, A.; Prozorovich, V.; Roshchina, M.; Grigoraviciute-Puroniene, I.; Zarkov, A.; Kareiva, A.; Wang, Zh.; Srivastava, V.; Sillanpää, M. "Heterogeneous Fenton oxidation using magnesium ferrite nanoparticles for Ibuprofen removal from wastewater: optimization and kinetics studies". J. Nanomater., 2020 (2020), article ID 8159628, https://doi.org/10.1155/2020/8159628.

Lu, F.; Astruc, D. "Nanocatalysts and other nanomaterials for water remediation from organic pollutants". Coord. Chem. Rev., 2020, 408, article ID 213180, https://doi.org/10.1016/j.ccr.2020.213180.

Thomas, N.; Dionysiou, D. D.; Pillai, S. C. "Heterogeneous Fenton catalysts: A review of recent advances". J. Hazard. Mater. , 2021, 404 (Part B), article ID 124082, https://doi.org/10.1016/j.jhazmat.2020.124082.

Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, S. W. "Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)". Pure Appl. Chem., 2015, 87(9-10), 1051-1069. https://doi.org/10.1515/pac-2014-1117.

Valeikiene, L.; Roshchina, M.; Grigoraviciute-Puroniene, I.; Prozorovich, V.; Zarkov, A.; Ivanets, A.; Kareiva, A. "On the reconstruction peculiarities of sol-gel derived Mg2-xMx/Al1 (M = Ca, Sr, Ba) layered double hydroxides". Crystals, 2020, 10(6), 470-488. https://doi.org/10.3390/cryst10060470.

Wang, W.; Niu, Q.; Zeng, G.; Zhang, Ch.; Huang, D.; Shao, B.; Zhou, Ch.; Yang, Y.; Liu, Y.; Guo, H.; Xiong, W.; Lei, L.; Liu, Sh.; Yi, H.; Chen, Sh.; Tang, X. "1D porous tubular g-C3N4 capture black phosphorus quantum dots as 1D/0D metal-free photocatalysts for oxytetracycline hydrochloride degradation and hexavalent chromium reduction". Appl. Catal., B, 2020, 273, article ID 119051. https://doi.org/10.1016/j.apcatb.2020.119051.

Wu, M.; Yan, J.-M.; Zhang, X.-W.; Zhao, M. "Synthesis of g-C3N4 with heating acetic acid treated melamine and its photocatalytic activity for hydrogen evolution". Appl. Surf. Sci., 2015, 354(Part A), 196-200. https://doi.org/10.1016/j.apsusc.2015.01.132.

Yang, Y.; Li, X.; Zhou, Ch.; Xiong, W.; Zeng, G.; Huang, D.; Zhang, Ch.; Wang, W.; Song, B.; Tang, X.; Li, X.; Guo, H. "Recent advances in application of graphitic carbon nitride-based catalysts for degrading organic contaminants in water through advanced oxidation processes beyond photocatalysis: A critical review". Water Res., 2020, 184, article ID 116200. https://doi.org/10.1016/j.watres.2020.116200.

Zhang, J.; Chen, X.; Takanabe, K.; Maeda, K.; Domen, K.; Epping, J. D.; Fu, X.; Antonietti, M.; Wang, X. "Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization". Angew. Chem. Int. Ed., 2010, 49, 441-444. https://doi.org/10.1002/anie.200903886.

Zhang, J.; Zhang, M.; Zhang, G.; Wang, X. "Synthesis of carbon nitride semiconductors in sulfur flux for water photoredox catalysis". ACS Catal., 2012, 2(6), 940-948. https://doi.org/10.1021/cs300167b.

Zhang, T. "Heterogeneous Catalytic Process for Wastewater Treatment". Advanced Oxidation Processes. Applications, Trends, and Prospects (Bustillo-Lecompte, C. (Ed.)). Intech Open Limited, London. 2020, 1-30. https://doi.org/10.5772/intechopen.90393.

Zhao, G.; Zou, J.; Chen, X.; Yu, J.; Jiao, F. "Layered double hydroxides materials for photo (electro-) catalytic applications". Chem. Eng. J., 2020, 397, article ID 125407. https://doi.org/10.1016/j.cej.2020.125407.

Zhu, D.; Zhou, Q. "Action and mechanism of semiconductor photocatalysis on degradation of organic pollutants in water treatment: A review". Environ. Nanotechnol. Monit. Manage., 2019, 12, article ID 100255. https://doi.org/10.1016/j.enmm.2019.100255.

Downloads

Published

2020-11-09

Issue

Section

Статті