DESIGN OF SUSTAINABLE INDUSTRIAL WATER NETWORKS: 2. "SEQUENTIAL" SYNTHESIS METHODS

Authors

  • Arcady Shakhnovsky National Technical University of Ukraine, “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine,
  • Oleksandr Kvitka National Technical University of Ukraine, “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine,

DOI:

https://doi.org/10.20535/2218-93002522019188250

Keywords:

design of chemical-engineering systems, water economy, water usage, water treatment, sequential methods, hierarchical methods, pinch analysis, optimization

Abstract

The second part of the work addresses an overview of the modern conceptual methods (also called insight-based, sequential, or hierarchical methods) of project decision support in the sustainable design of water economy networks. The stages of insight-based methods of water economy networks design: graphical/analytic modeling stage to identify the water saving potential as well as optimal network structure synthesis stage were described in detail.

References

Agrawal V., Shenoy U.V. Unified conceptual approach to targeting and design of water and hydrogen networks. AIChE Journal. 2006. 52 (3), 1071-1082. DOI: https://doi.org/10.1002/aic.10724

Aguilar-Oropeza G., Rubio-Castro E., and Ponce-Ortega J.M. Involving Acceptability in the Optimal Synthesis of Water Networks in Eco-Industrial Parks. Ind. Eng. Chem. Res. 2019. 58 (6), 2268–2279. DOI: 10.1021/acs.iecr.8b04419

Al-Mutlaq A.M., Kazantzi V., El-Halwagi, M.M. An algebraic approach to targeting waste discharge and impure fresh usage via material recycle/reuse networks. Clean Technologies and Environmental Policy. 2005. 7 (4), 294–305. DOI: 10.1007/s10098-005-0005-8.

Alnouri Y.S., Linke P., Bishnu Kr.S. & El-Halwagi M. Synthesis and Design Strategies of Interplant Water Networks using Water Mains with Quality Specifications. Computer Aided Chemical Engineering. 2016. 38 655-660. DOI: 10.1016/B978-0-444-63428-3.50114-4

Alva-Argaez A., Vallianatos A., Kokossis A. A multi-contaminant transhipment model for mass exchange networks and wastewater minimisation problems. Computers and chemical engineering. 1999. 23 (10). 1439 – 1453. doi: https://doi.org/10.1016/S0098-1354(99)00303-8

Alwi S.R.W. & Manan Z. A new cost-screening technique to attain cost-effective minimum water network. AIChE Journal. 2006. 52 (11). 3981–3988. https://doi.org/10.1002/aic.10986

Alwi S.R.W. & Manan Z.A. Targeting multiple water utilities using composite curves. Ind. Eng. Chem. Res. 2007. 46 (18), 5968–5976. Doi: http://dx.doi.org/10.1021/ie061238k

Alwi S.R.W., Manan Z.A. Generic graphical technique for simultaneous targeting and design of water networks. Ind. Eng. Chem. Res. 2008. 47 (8), 2762–2777. DOI: 10.1021/ ie071487o.

Aly S., Abeer S., Awad M. A new systematic approach for water network design. Clean Technol. Environ. Policy. 2005. 7 (3), 154-161 http://dx.doi.org/10.1007/s10098-005-0004-9.

Bandyopadhyay S., Ghanekar, M.D., Pillai, H.K. Process water management. Ind. Eng. Chem. Res. 2006a. 45 (15), 5287-5297. DOI: 10.1021/ie060268k

Bandyopadhyay S. Source composite curve for waste reduction. Chem. Eng. J. 2006b. 125, 99–110. DOI: 10.1016/j.cej.2006.08.007.

Bavar M., Sarrafzadeh M.-H., Asgharnejad H. & Norouzi-Firouz H. Water management methods in food industry: Corn refinery as a case study. Journal of Food Engineering. 2018. 238, 78–84. doi:10.1016/j.jfoodeng.2018.06.018

Deng C., Feng X., Bai J. Graphically based analysis of water system with zero liquid discharge. Chemical Engineering Research and Design. 2008. 86 (2), 165-171. DOI: https://doi.org/10.1016/j.cherd.2007.11.003

Deng, C., Feng, X., Ng, D.K.S., Foo, D.C.Y., (2011a). Process-based graphical approach for simultaneous targeting and design of water network. AIChE J. 57, 3085–3104, http://dx.doi.org/ 10.1002/aic.12508.

Deng C., Feng X. Targeting for conventional and property-based water network with multiple resources. Industrial and Engineering Chemistry Research. 2011b. 50 (7), 3722-3737. DOI: 10.1021/ie1012008

Dhole V.R., Ramchandani N., Tainsh R.A., Wasilewski M. Make your process water pay for itself. Chemical Engineering. 1996. 103, 100–103. ResearchGate: https://www.researchgate.net/publication/236445485_ Make_your_process_water_pay_for_itself

Dunn R.F., Bush G.E. Using process integration technology for CLEANER production. Journal of Cleaner Production. 2001. 9 (1), 1-23. DOI: 10.1016/S0959-6526(00)00021-4

El-Halwagi, M. M., & Manousiouthakis, V. (1990). Automatic synthesis of mass-exchange networks with single-component targets. Chemical Engineering Science, 45(9), 2813–2831. DOI: 10.1016/0009-2509(90)80175-E

El-Halwagi M.M., Gabriel F., Harell D. Rigorous graphical targeting for resource conservation via material recycle/reuse networks. Ind. Eng. Chem. Res. 2003. 42 (19), 4319–4328. DOI: 10.1021/ie030318a

Feng X., Bai J., Zheng X. On the use of graphical method to determine the targets of single-contaminant regeneration recycling water systems. Chemical Engineering Science. 2007. 62 (8), 2127−2138. DOI: 10.1016/j.ces.2006.12.081

Foo D.C.Y., Manan, Z.A., Tan, Y.L. Use cascade analysis to optimize water networks. Chem. Eng. Prog. 2006. 102, 45–52. ResearchGate: https://www.researchgate.net/publication/279894741_Use_cascade_ analysis_to_optimize_water_networks

Foo D.C.Y. State-of-the-art review of pinch analysis techniques for water network synthesis. Ind. Eng. Chem. Res. 2009. 48, 5125–5159. DOI: 10.1021/ie801264c

Francisco F., Bagajewicz M.J., Pessoa F.L.P. & Queiroz, E.M. Extension of the water sources diagram method to systems with simultaneous fixed flowrate and fixed load processes. Chemical Engineering Research and Design. 2015. 104, 752–772. DOI: 10.1016/j.cherd.2015.10.024

Gomes J.F.S., Queiroz E.M., Pessoa F.L.P. Design procedure for water/wastewater minimization: single contaminant. Journal of Cleaner Production. 2007. 15 (5), 474-485. DOI: 10.1016/j.jclepro.2005.11.018

Gu Y., Xu J., Wang H., Li F. Industrial water footprint assessment: methodologies in need of improvement. Environ. Sci. Technol. 2014. 48 (12), 6531–6532. DOI: 10.1021/es502162w

Hallale N. A new graphical targeting method for water minimization. Advances in Environmental Research. 2002. 6 (3), 377-390. doi: https://doi.org/10.1016/S1093-0191(01)00116-2

Hamad A., El-Halwagi M. Simultaneous Synthesis of Mass Separating Agents and Interception Networks. Chem. Eng. R&D. 1998. 76(3), 376–388. doi: https://doi.org/10.1205/026387698524802

Hamad A., Aidan A. & Douboni M. Cost-effective wastewater treatment and recycling in mini-plants using mass integration. Clean Technologies and Environmental Policy. 2003. 4 (4), 246–256. DOI: 10.1007/s10098-002-0166-7

Jeżowski J., Walczyk K., Szachnowskij A., Jeżowska A. Systematic methods for calculation minimum flow rate and cost of water in industrial plants // Chemical and Process Engineering. 2006. 27 (3), 1137-1154.

Jeżowski J. Review of water network design methods with literature annotations. Ind. Eng. Chem. Res. 2010. 49, 4475–4516. Doi: http://dx.doi.org/10.1021/ie901632w

Jia X., Li Z., Wang F., Foo D.C.Y., Qian Y. A new graphical representation of water footprint pinch analysis for chemical processes. Clean Technologies and Environmental Policy. 2015. 17 (7), 1987–1995. DOI: 10.1007/s10098-015-0921-1

Klemes J.J., Varbanov P.S., Walmsley T.G., Jia X. New directions in the implementation of Pinch Methodology (PM). Renewable and Sustainable Energy Reviews. 2018. 98, 439-468. https://doi.org/10.1016/j.rser.2018.09.030

Kuo W.-C.J. & Smith R. Design of Water-Using Systems Involving Regeneration. Process Safety and Environmental Protection. 1998. 76(2), 94–114. doi: 10.1205/095758298529399

Ku-Pineda V., Tan R.R. Environmental performance optimization using process water integration and Sustainable Process Index. J. Clean. Prod. 2006. 14 (18), 1586–1592. DOI: 10.1016/j.jclepro.2005.04.018

Kutepov A. M., Meshalkin V.P., Nevskii A.V. Environmental technology: Exergy analysis in the design of water-saving technological systems. Inzhenernaya ekologiya (Engineering ecology). 2002. 1, 50–57. [In Russian]. Istina: https://istina.msu.ru/publications/article/101828628/

Li B.-H., Chang Ch.-T. Judicious generation of alternative water network designs with manual evolution strategy. Chemical Engineering Research And Design. 2012. 90 (9), 1245–1261. Doi: 10.1016/j.cherd. 2011.12.011

Linhoff B., Hindmarsh E. The pinch design method of heat exchanger networks. Chem. Engng. Science. 1983. 38, 745-763. doi: 10.1016/0009-2509(83)80185-7

Liu, Y., Yuan, X., Luo, Y. (2007a). Synthesis of water utilization system using concentration interval analysis method (I) Non-mass-transfer-based operation. Chinese Journal of Chemical Engineering 15, 361-368. DOI: https://doi.org/10.1016/S1004-9541(07)60093-7

Liu Y., Yuan X., Luo Y. Synthesis of water utilization system using concentration interval analysis method (II) Discontinuous Process. Chinese Journal of Chemical Engineering. 2007b. 15 (3), 369-375. DOI: https://doi.org/10.1016/S1004-9541(07)60094-9

Manan Z. A., Tan Y. L., Foo D. C. Y. Targeting the minimum water flowrate using water cascade analysis technique. AIChE Journal. 2004. 50 (12), 3169–3183. ResearchGate: https://www.researchgate.net/ publication/227504238_Targeting_the_minimum_water_flowrate_using_water_cascade_analysis_technique

Mann J. G., Liu Y. A. Industrial water reuse and wastewater minimization. New York: McGraw-Hill, 1999.

Meng L. H., Qiao Q., Liu J. Y. Review of the Application of Water Pinch Technology in Water-Saving and Emission Reduction. Applied Mechanics and Materials. 2014. 522-524, 181-186. Doi: https://doi.org/10.4028/www.scientific.net/AMM.522-524.181

Ng D.K.S., Foo D.C.Y., Tan R.R. Automated targeting technique for single-impurity resource conservation networks. Part 1: direct reuse/recycle. Industrial & Engineering Chemistry Research. 2009. 48 (16), 7637-7646. DOI: 10.1021/ie900120y

Ng D.K.S., Chew M.L., Tan R.R., Foo D.C.Y., Ooi M.B.L. & El-Halwagi M.M. RCNet: An optimisation software for the synthesis of resource conservation networks. Process Safety and Environmental Protection, 2014. 92 (6), 917–928. Doi: https://doi.org/10.1016/j.psep.2013.10.006

Nikolakopoulos A., & Kokossis A. A problem decomposition approach for developing total water networks in lignocellulosic biorefineries. Process Safety and Environmental Protection, 2017. 109, 732–752. doi:10.1016/j.psep.2016.12.007

Olesen S.G. & Polley G.T. Dealing with plant geography and piping constraints in water network design. Process Safety and Environmental Protection. 1996. 74 (4), 273-276. Doi: https://doi.org/10.1205/ 095758296528626

Papoulias S.A., Grossmann I.E. A structural optimization approach in process synthesis – II: Heat recovery networks. Computers & Chemical Engineering. 1983. 7 (6), 707-721. doi: https://doi.org/10.1016/0098-1354(83)85023-6

Parand R., Yao H. M., Foo D. C.Y., Tade M. O. Automated Pinch-Based Approach for the Optimum Synthesis of a Water Regeneration−Recycle Network – Study on the Interaction of Important Parameters. Industrial & Engineering Chemistry Research. 2016. 55, 11269-11282. DOI: 10.1021/acs.iecr.6b01372

Parand R., Yao H.M., Tadé M.O., Pareek V. Composite table algorithm – A powerful hybrid pinch targeting method for various problems in water integration. Int. J. Chem. Eng. Appl. 2013. 4 (4), 224-228. DOI: 10.7763/IJCEA.2013.V4.300

Parthasarathy G. and Krishnagopalan G. Systematic reallocation of aqueous resources using mass integration in a typical pulp mill. Advances in Environmental Research. 2001. 5 (1), 61–79. https://doi.org/ 10.1016/S1093-0191(00)00043-5

Patole M., Tan R.R., Bandyopadhyay S. & Foo D.C.Y. Pinch analysis approach to energy planning using weighted composite quality index. Chemical Engineering Transactions. 2016. 52, 961-966. DOI: 10.3303/CET1652161

Patole M., Bandyopadhyay S., Foo D.C.Y. & Tan R.R. Energy sector planning using multiple-index pinch analysis. Clean Technologies and Environmental Policy. 2017. 19 (7), 1967-1975. DOI: 10.1007/s10098-017-1365-6

Polley G.T., Polley H.L. Design better water networks. Chemical Engineering Progress. 2000. 96 (2), 47-52. ResearchGate: https://www.researchgate.net/publication/279891786_Design_better_water_networks

Prakash R., Shenoy U.V. Targeting and design of water networks for fixed flowrate and fixed contaminant load operations. Chemical Engineering Science. 2005. 60 (1), 255–268. DOI: /10.1016/j.ces.2004.08.005

Pungthong K., Siemanond K. MINLP Optimization Model for Water/wastewater Networks with Multiple Contaminants. Computer Aided Chemical Engineering. 2015. 37, 1319-1324. Doi: https://doi.org/10.1016/ B978-0-444-63577-8.50065-6

Rubio-Castro E., Ponce-Ortega J.M., Napoles-Rivera E., El-Halwagi M.M., Serna-Gonzalez. M., Jimenez-Gutierrez A. Water integration of eco-industrial parks using a global optimization approach. Industrial & Engineering Chemistry Research. 2010. 49 (20), 9945-9960. DOI: 10.1021/ie100762u

Saw S.K., Lee L., Lim M., Foo D.C., Chew I.M., Tan R.R., Klemes J.J. An extended graphical targeting technique for direct reuse / recycle in concentration and property-based resource conservation networks. Clean Technologies & Environmental Policy. 2011. 13 (2), 347-357. SpringerProfessional: https://www.springerprofessional.de/an-extended-graphical-targeting-technique-for-direct-reuse-recyc/5321426#pay-wall

Shenoy U.V. Enhanced nearest neighbors algorithm for design of water networks. Chemical Engineering Science. 2012. 84, 197-206. DOI: 10.1016/j.ces.2012.08.014

Skouteris G., Ouki S., Foo D., Saroj D., Altini M. and others. Water footprint and water pinch analysis techniques for sustainable water management in the brick-manufacturing industry. J. Clean. Prod. 2018. 172, 786-794. DOI: 10.1016/j.jclepro.2017.10.213

Statyukha G., Kvitka O., Shakhnovsky A., Dzhygyrey I. Water-efficiency as Indicator for Industrial Plant Sustainability Assessment. Computer Aided Chemical Engineering. 2009. 26, 1227-1232. DOI: 10.1016/S1570-7946(09)70204-4

Thevendiraraj S., Klemes J., Paz D., Aso G. & Cardenas G.J. Water and wastewater minimisation study of a citrus plant. Resources conservation & recycling. 2003. 37 (3), 227–250. DOI: 10.1016/S0921-3449(02)00102-7

Venkatesh, G. Water pinch analysis – a review of recent journal publications. Journal of Water Management and Research. 2018. 74 (3), 147-152. ResearchGate: https://www.researchgate.net/publication/328686981_ WATER_PINCH_ANALYSIS_-_A_REVIEW_OF_RECENT_JOURNAL_PUBLICATIONS_VATTEN-PINCH_ANALYS_-_EN_OVERSYN_AV_DE_SENASTE_PUBLIKATIONERNA

Wang Y.P., Smith R. Wastewater minimisation. Chem. Eng. Sci. 1994a. 49, 981–1006. Doi: http://dx.doi.org/10.1016/0009-2509(94)80006-5

Wang Y.P., Smith R. Design of distributed effluent treatment systems. Chem. Eng. Sci. 1994b. 49 (18), 3127–3145. doi: https://doi.org/10.1016/0009-2509(94)E0126-B

Wang Y.P., Smith R. Wastewater minimization with flowrate constraints. Chemical Engineering Research and Design. 1995. 73 (Part A), 889–904. ResearchGate: https://www.researchgate.net/publication/ 279602119_Wastewater_minimization_with_flowrate_constraints

Wang S., Zheng S., Yang X. & Li Y. Using water cascade analysis to synthesize water use network in batch process. Computer Aided Chemical Engineering. 2006. 21, 509–514. Doi: https://doi.org/10.1016/S1570-7946(06)80096-9

Wenzel H., Dunn R.F., Gottrump L. and Kringelum J. Process integration design methods for water conservation and wastewater reduction in industry. Part 3: Experience of industrial application. J. Clean Technologies and Environmental Policy. 2002. 4 (1), 16–25. DOI: 10.1007/s10098-002-0146-y

Downloads

Published

2021-06-02

Issue

Section

Статті