WATER TREATMENT BIOTECHNOLOGY FOR BREEDING OF SHARPTOOTH CATFISH IN THE RAS

Authors

  • С. В. Кононцев Національний технічний університет України «Київський політехнічний інститут ім. І. Сікорського», Україна, м. Київ, Ukraine

DOI:

https://doi.org/10.20535/2218-93002032016122682

Keywords:

water treatment, nitrogen removal, RAS, biotechnology

Abstract

The aim of this work is to study the features of contaminated water formation in the recirculation aquaculture systems (RAS) plants for breeding of sharptooth catfish (Clarias gariepinus, Burchell 1820) and to develop the effective biotechnology for water quality recovering to allow water reuse. Disadvantages of classical water treatment technology from dissolved nitrogen compounds by using the nitrification with following denitrification lead to significant slowdown in the fish growth and increase the cost of products. On the basis of the analysis of pollutants concentrations in the catfish farm, which is working on the RAS-principle, the features of contaminated water formation and the reasons of low efficiency of facilities for mechanical and biological treatment were determined. The biotechnology that provides effective removal of dissolved nitrogen and phosphorus compounds by using phytoreactor with floating aquatic plants was proposed. Expediency of using molluscs in the processes of transformation of undissolved organic compounds in RAS water was proved. A comprehensive scheme of biological water treatment in RAS-plants for breeding of catfish was developed.

References

Bregnballe J. A Guide to Recirculation Aquaculture An introduction to the new environmentally friendly and highly productive closed fish farming systems /Jacob Bregnballe // FAO and EUROFISH. — 2015. — 97 р.

Bovendeur J. Design and performance of a recirculation system for high-density culture of the African catfish, Clarias gariepinus (Burchell 1822) / J. Bovendeur, E. Eding, A.M. Henken // Aquaculture. — 1987. — 63. — P. 329—353.

Schneider O. Analysis of nutrient flows in integrated intensive aquaculture systems / O. Schneider, V. Sereti, EH. Eding, JAJ. Verreth // Aquac Eng. — 2005. — 32. — р. 379—401.

Villaverde S. Nitrifying biofilm acclimation to free ammonia in submerged biofilters, Start-up influence / S. Villaverde, F. Fdz-Polanco, P.A. García // Water Res. — 2000. — 34. — Р. 602—610.

Rijn J. Aerobic and anaerobic biofiltration in an aquaculture unit-nitrite accumulation as a result of nitrification and denitrification / J.Rijn, G.Rivera // Aquacult. Eng. — 1990. — №9. — P. 217—234.

Tsukuda S. Heterotrophic denitrification of aquaculture effluent using fluidized sand biofilters / Scott Tsukuda, Laura Christianson, Alex Kolb, Keiko Saito, Steven Summerfelt // Aquacultural Engineering. — 2015. — Volume 64. — Р. 49—59.

Michaud L. Effect of particulate organic carbon on heterotrophic bacterial populations and nitrification efficiency in biological filters / L. Michaud, J.P. Blancheton, V. Bruni, R. Piedrahita // Aquac. Eng. — 2006. — 34. — Р. 224—233.

Rijn J. Denitrification in recirculating systems: Theory and applications / Jaap van Rijn, Yossi Tal, Harold J. Schreier // Aquacultural Engineering. — 2006. — 34. — Р. 364—376.

Lee, P.G. Denitrification in aquaculture systems: an example of fuzzy logic control problem / P.G. Lee, R.N. Lea, E. Dohmann, W. Prebilsky, P.E. Turk, H. Ying, J.L. Whitson // Aquacult. Eng. — 23. — 2000. — Р. 37—59.

Lochmann R. Multi-batch catfish production and economic analysis using alternative (low-cost) diets with corn gluten feed and traditional diets with meat and bone meal / Rebecca Lochmann, Carole Engle, Ganesh Kumar, Menghe H. Li, Jimmy L. Avery , Brian G. Bosworth , Craig S. Tucker // Aquaculture. — 2012. — 34. — P. 366—367.

Meriac A. Dietary carbohydrate composition can change waste production and biofilter load in recirculating aquaculture systems / Andre Meriac, Ep H. Eding, Johan Schrama, Andries Kamstra , Johan A. Jerreth // Aquaculture . — 2014. — 254. — P. 420—421.

Published

2016-10-09

Issue

Section

Статті