ANALYSIS OF THE WORK OF MULTI-STAGE PROCESS PLANT AFTERTREATMENT OF TAP WATER IN THE EXISTING PRODUCTION AND WAYS OF ITS IMPROVEMENT

Authors

  • І. Ю. Рой Інститут колоїдної хімії і хімії води імені О. В. Думанського НАН України, м. Київ, Ukraine
  • Л. К. Патюк Інститут колоїдної хімії і хімії води імені О. В. Думанського НАН України, м. Київ, Ukraine
  • Н. А. Клименко Інститут колоїдної хімії і хімії води імені О. В. Думанського НАН України, м. Київ, Ukraine

DOI:

https://doi.org/10.20535/2218-93001812016122390

Keywords:

potable water, granulated activated carbon (GAC), bacteria, biofilm, chlorination, sodium hypochlorite (NaClО)

Abstract

Studied the microbiological indicators of water treatment plants and identified the technical and technological conditions necessary to ensure compliance with regulatory microbiological quality characteristics of purified tap water for use in the process. It was found that the actual level of microflora, which was observed in the final stage of water treatment, in some cases, have exceeded refers to the set of draft standards, namely 30 CFU / 100sm³. The intensity of the bacteria throughout the flowsheet, differ in processing steps, and in the period of operation, indicating that the trend towards the development of local and seasonal flora. Since the water samples after charcoal filters and granular activated carbon (GAC) were isolated bacteria which reduce chlorates. Culture showed high activity recovery of chlorine, which samples GAC reached 68.3%, while for bacteria isolated from water samples after a carbon filter, was 79.2%. Isolated microorganisms, reducing the oxygen compounds of chlorine, substantially reduce the effectiveness of water disinfection and disinfection equipment with sodium hypochlorite (NaClО). Identified the main sources of contamination of processing steps which can be divided into external, when microorganisms get into system equipment installation outside water entering the purification or air, and internal - is the cell, which is the development of microflora with subsequent spread of bacterial cells water flow. Оffered recommendations to improve the existing water disinfection technology, and restrict unwanted growth of microflora in the system of water purification equipment to ensure regulatory quality indicators of purified water for microbiological parameters.

References

ДСанПіН 2.2.4-171-10 «Гігієнічні вимоги до води питної, призначеної для споживання людиною». Затверджені наказом МОЗ України від 12.05.2010 № 400, зареєстровано в Мін’юсті України наказом від 01.07.2010 за № 452/17747.

ДСТУ 7525:2014 «Вода питна. Вимоги та методи контролювання якості».

Директива Ради Європейського Союзу 98/83/ЄС від 3 листопада 1998 р. по якості води, призначеної для вживання людиною.

Sibille, I., Mathieu, L., Paquin, J.L. Microbial characteristics of a distribution system fed with nanofiltered water // Water Research. – 1997. – V. 31. – Р. 2318 -2326.

Liu, G., Lut, M.C, Verberk, J.Q., Van Dijk, J.C. A comparison of additional treatment

processes to limit particle accumulation and microbial growth during drinking water distribution // Water Research. – 2013. - V. 47. - Р. 2719 - 2728.

Zhang, H., Andrews, S.A. Catalysis of copper corrosion products on chlorine decay and HAA formation in simulated distribution systems // Water Research. – 2012. V. 46. – Р. 2665-2673.

Wang, H., Hu, C., Hu, X., Yang, M., Qu, J.H. Effects of disinfectants 603 and biofilm on the corrosion of cast iron pipes in a reclaimed water distribution syste // Water Research. – 2012. - V. 46. – Р. 1070- 1078.

Hallam, N.B., Westy, J.R., Forster, C.F., Powell, J.C., Spencer, I. The decay of chlorine associated with the pipe wall in water distribution systems // Water Research. – 2002. - V. 36. – Р. 3479-3488.

Lethola, M.J., Miettinen, I.T., Lampola, T., Hirvonen, A., Vartiainen, T., Martikainen, P.J. Pipeline materials modify the effectiveness of disinfectants in drinking water distributions systems // Water Research. – 2005. - V. 39. – Р. 1962-1971.

Hubbard H.C. Chlorine dioxide reactions with indoor materials during building disinfection: surface uptake // Environ. Sci. Technol. – 2009. - V. 43. – Р. 1329-1335.

Xue, Z., Sendamangalam, V.R., Gruden, C.L., Seo, Y. Multiple role of extracellular polymeric substances on resistance of biofilm and detached clusters // Environ. Sci. Technol. – 2012. - V. 46. – Р. 13212- 13219.

Mathieu, L., Bouteleux, C., Fass, S., Angel, E., Block, J.-C. Reversible shift in the α-, β- and γ- proteobacteria populations of drinking water biofilms during discontinuous chlorination // Water Research. – 2009. - V. 43. – Р. 3375-3386.

Towler, B.W., Rupp, C.J., Cunningham , A.B., Stoodley, P. Visco-elastic properties of a mixed culture biofilm from rheometer creep analysis // Biofouling. – 2003. - V. 19. – Р. 279 - 285.

Abe, Y., Polyakov, P., Skali-Lami, S., Francius, G. Elasticity and physico-chemical properties during drinking water biofilm formation // Biofouling. –2011. – V. 27. – Р. 739 -750.

Abe, Y., Skali-Lami, S., Block, J.-C., Francius, G. Cohesiveness and hydrodynamic properties of young drinking water biofilms // Water Research. – 2012. - V. 46. – Р. 1155-1166.

Jones, W.L., Sutton, M.P., McKittrick, L., Stewart, P.S. Chemical and antimicrobial treatments change the viscoelastic properties of bacterial biofilms // Biofouling. – 2011. - V. 27. – Р. 207-215.

Paul, E., Ochoa, J.C., Pechaud, Y., Liu, Y., Line, A. Effect of shear stress and growth conditions on detachment and physical properties of biofilms // Water research. – 2012. - V. 46. – Р. 5499–5508.

Chen, X., Stewart, P.S. Role of electrostatic interactions in cohesion of bacterial biofilms // Appl. Environ. Microbiol. – 2002. - V. 59. – Р. 718-720.

Flemming, HC, Wingender, J. The biofilm matrix // Nat. Rev. Microbiol. – 2010. - V. 8. - Р. 623– 633.

Aldeek, F., Schneider, R., Fontaine-Aupart, M. Patterned hydrophobic domains in the exopolymer matrix of Shewanella oneidensis MR- 1 biofilms // Appl. Environ. Microbiol - 2013. - V. 79. Р. 1400 - 1402.

Mah, T.F., O'Toole, G.A. Mechanisms of biofilm resistance to antimicrobial agents // Trends in Microbiology. - 2001. - V. 9. – Р. 34-39.

Xue, Z., Sendamangalam, V.R., Gruden, C.L., Seo, Y. Multiple role of extracellular polymeric substances on resistance of biofilm and detached clusters // Environ. Sci. Technol. – 2012. - V. 46. – Р. 13212-13219.

Xavier, J.B., Picioreanu, C., Rani, S.A. Biofilm-control strategies based on enzymic disruption of the extracellular polymeric substance matrix – a modelling study // Microbiology. – 2005. - V. 151. – Р. 3817–3832.

Jones, W.L., Sutton, M.P., McKittrick, L., Stewart, P.S. Chemical and antimicrobial treatments change the viscoelastic properties of bacterial biofilms // Biofouling. – 2011. - V. 27. – Р. 207-215.

Lieleg, O., Caldara, M., Baumgartel, R., Ribbeck, K. Mechanical robustness of Pseudomonas aeruginosa biofilms // Soft matter. - 2011. - V. 7. – Р. 3307-3314.

Davison, W.M., Pitts, B., Stewart, P.S. Spatial and temporal patterns of biocide action against Staphylococcus epidermitis biofilms // Antimicrob. Agents Chemother. – 2011.- V. 54. Р. 2920-2927.

Tachikawa, M., Yamanaka, K., Nakamuro, K. Studies on the disinfection and removal of biofilms by ozone water using an artificial microbial biofilm system // Ozone: Science & Engineering. – 2009. - V. 31. Р. 3-9.

Kasuga, I., Shimazaki, D., Kunikane, S. Influence of backwashing on the microbial community in a biofilm developed on biological activated carbon used in a drinking water treatment plant // Water Sci. Technol. – 2007. - V. 55. – Р. 173 - 180.

Huang, W.J., Chen, L.Y. Assessing the effectiveness of ozonation followed by GAC filtration in removing bromate and assimilable organic carbon // Environ. Technol. – 2004. - V. 25. – Р. 403 - 412.

Velten, S., Boller, M., Koster, O. Development of biomass in a drinking water granular active carbon (GAC) filter // Water Res. – 2011. - V. 45. – Р. 6347 - 6354.

Emelko, M.B., Huck, P.M., Coffey, B.M., Smith, E.F. Effects ofmedia, backwash, and temperature on full-scale biological filtration // J. Am. Water Works Assoc. – 2006. - V. 98. – Р. 61 - 73.

Laurent, P., Kihn, A., Andersson, A., Servais, P. Impact of backwashing on nitrification in the biological activated carbon filters used in drinking water treatment // Environ. Technol. – 2003. – V. 24. Р. 277 - 287.

Putz, A.R.H., Losh, D.E., Speitel, G.E. Removal of nonbiodegradable chemicals from mixtures during granular activated carbon bioregeneration // J. Environ. Eng. – 2005. - V. 131. – Р. 196 - 205.

Moll, D.M., Summers, R.S., Fonseca, A.C., Matheis, W. Impact of temperature on drinking water biofilter performance and microbial community structure // Environ.Sci. Technol. – 1999. - V. 33. – Р. 2377 - 2382.

Zhu, I.X., Getting, T., Bruce, D. Review of biologically active filters in drinking water applications // J. Am. Water Works Assoc. – 2010. - V. 102. – Р. 67 - 77.

Zheng, L., Gao, N., Deng, Y., Du, E., Sui, M., Liu, S. The effect of backwashing in the structure of microbial community on biological activated carbon (BAC) in a water treatment plant // Fresen. Environ. Bull. – 2011. - V. 20. – Р. 1741 - 1748.

Gibert О., Lefevre В., Fernandez М. Characterising biofilm development on granular activated carbon used for drinking water production // Water Res. - 2013. - V. 47(3). – Р.1101-1110.

Berber V.B., Gomes B.P. In vitro antimicrobial activity of sodium hypochlorite and chlorhexidine against selected single-species biofilms // Int. Endod. J. – 2006. – V. 39 (11). – P. 878 –885.

Смирнова Т. А., Диденко Л. В., Азизбекян Р. Р., Романова Ю. М. Структурно – функциональная характеристика бактериальных биопленок // Микробиология. 2010. Т. 79. № 4. С. 435 – 446.

МВ 10.2.1–113–2005 Санітарно-мікробіологічний контроль якості питної води. – К. : Міністерство охорони здоров’я України, 2005.

Санитарно-микробиологический анализ питьевой воды. Методические указания: МУК 4.2.10.18-01. – Москва, 2001.

Петрашень В.И. Объемный анализ − М.: Гостхимиздат, 1946. − 227 с.

Поздеев О. К. Медицинская микробиология / Под ред. В. И. Покровского. – 2-е изд., испр. – М.: ГЭОТАР-МЕД, 2004. – С. 267 – 268.

Жвирблянская А. Ю. Микробиологический контроль производства пива и безалкогольних напитков. М. – 1970.

Врюкалова Л.Т., Дудка Г.И., Тимченко О.В., Бережная И.Д. Гигиеническая оценка содержания хлорорганических соединений (хлороформа) в питьевой воде // Запорожский медицинский журнал. – 2012. - № 1(70). – С. 81 – 82.

LeChevallier M.W., Caawthon C.D., Lee R.G. Factor promoting survival of bacteria in chlorinated water supplies // Appl. Environ. Microbiol. – 1988. – V. 54(3). – P. 649 − 654.

LeChevallier M.W., Caawthon C.D., Lee R.G. Inaction of biofilm bacteria // Appl. Environ. Microbiol. – 1988. – V. 54(12). – P. 2492 − 2499.

Мокиенко А.В., Петренко Н.Ф., Гоженко А.И. Адаптивная мультирезистентность бактерий: вклад в эволюцию эпидемического процесса // Профiлактична медицина. – 2011. – № 2 (14). – С. 90 – 95.

Інструкція із застосування дезінфекційного засобу «Реагент комплексної дії "Акватон-10"для знезараження води і об’єктів водопідготовки при децентралізованому та автономному водозабезпеченні // Київ. – 2013.

Published

2016-04-06

Issue

Section

Статті